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ABSTRACT

In the beginning of 2005, EISCAT entered the third phase
in continuing contract work for ESA. In 2005, we in-
tend to conduct about 500 hours of measurements of
space debris in LEO with the EISCAT ionospheric radars,
piggy-backed on top of the standard EISCAT measure-
ments. We use a special, workstation-based, digital re-
ceiver back-end and pulse-to-pulse coherent integration.
A crucial step in achieving real-time detection speed is
to use for spectrum computation a tailor-made algorithm,
which boosts detection computation speed by more than
a factor of 100. Our first “routine”, 100-hour, real-time
measurement campaign, in November 2004, found 1518
targets, with the detection sensitivity corresponding to
detecting a sphere of 2 cm diameter at 1000 km range.
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1. INTRODUCTION

Since the early 1980’s, the EISCAT mainland radars—
the Tromsø UHF radar at latitude69.6◦N, operating at
930 MHz and the VHF radar operating at 225 MHz—
have been performing ionospheric measurements to the
order of 2000 hours per year; and since the late 1990s,
after the EISCAT Svalbard radar (latitude78.2◦N) be-
came operational, EISCAT has been measuring more than
3000 hours annually. The interest is to use a substantial
amount of these operating hours for simultaneous space
debris (SD) measurements in a cost-effective way. In
2000-2001, colleagues in Sodankylä Geophysical Obser-
vatory (SGO) and myself undertook an initial study for
ESA on the feasibility of using the EISCAT radars for
SD measurements (ESA, 1999). We demonstrated that
by using a special digital receiver back-end, which we
call the space debris receiver, and applying pulse-to-pulse
coherent integration in the data processing, it was pos-
sible to achieve detection sensitivity corresponding the
detection of 2 cm spheres at 1000 km range (Markka-
nen et al., 2002). The initial study showed that it was
no problem to perform the SD measurements in parallel
with normal EISCAT ionospheric measurements, and that

a usable event rate, 10–20 targerts per hour in LEO, was
achieved.

Our radar-ambiguity-function based method of pulse-to-
pulse coherent integration, which we call the match func-
tion (MF) method, computes spectra of tightly sampled
signals which span tens of interpulse periods, and is com-
putationally demanding. With the MF method, in typical
measurement setup, target detection in real-time requires
about 100 GFlops computing speed. In the 3rd Euro-
pean Space Debris conference in 2001, we had to concede
that with the 50 MFlops processing speed that we had
achieved at the time, it would take more than a century of
CPU time to analyze just one year’s quota of EISCAT SD
measurements. But soon afterwards, M Lehtinen from
SGO, who was the project leader of the initial study, re-
alized that by accepting some loss of detection sensitiv-
ity and a small bias in the velocity estimate, it would be
possible to speed up detection computations drastically,
typically by more than two orders of magnitude. We use
the term fast match function algorithm (FMF) for the re-
sulting computation scheme. The basic FMF scheme is
sketched in Fig. 5.

In 2003, ESA commenced a second study with us, to
bring the analysis of significant amounts of EISCAT SD
data up to real-time speed (ESA, 2002). The study, fin-
ished in 2004, achieved the processing speed increase by
about a factor of 10 000 (Markkanen and Postila, 2005).
The FMF algorithm is about 100 times faster than the
original MF algorithm, basically by managing to do with
about 100 times less floating point operations per detec-
tion. A further factor of ten was obtained by coding the
MF and FMF algorithms in C instead of Matlab. In ad-
dition, Apple computers have progressed from 450 MHz
single-processor G4 workstations to the present-day dual-
processor 2 GHz G5s, giving a further factor of ten in
processing speed. The achieved speed allows real-time
detection and parameter estimation to be done with a sin-
gle G5 Mac.

During the second study, in four measurement cam-
paigns, we collected and analysed about 150 hours of
data, all at the EISCAT UHF radar in Tromsø. These
data contain about 2500 targets. Examples of the data are
shown in Fig. 6 and Fig. 7. About 500 hours of EISCAT
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Figure 1. The space debris (SD) receiver connected to
the EISCAT UHF radar. The SD receiver consists of a
measurement computer and an analysis computer. The
measurement computer hosts a custom signal process-
ing board (GURSIP). The primary analog input to the
SD receiver is the EISCAT second intermediate frequency
(IF 2) band. The input contains, time-multiplexed, both
the standard received signal and the transmission sam-
ple signal (TS). On the processing board, there is an
analog-to-digital converter (A/D) taking 40 megasam-
ples per second; a direct-digital-synthesizer chip (DDS),
which provides clock signals on the board, phase-locked
to the host radar’s 10 MHz frequency reference signal;
two Xilinks signal processing chips (XILINX) to perform
signal demodulation and sampling rate reduction; and a
memory buffer for temporary storage of the samples. The
recorder program running on the measurement computer
moves the samples over a gigibit network link to an ex-
ternal FireWire disk, mounted on the analysis computer.
Target detection is done by the scanner program running
on the analysis computer, using the FMF-algorithm. Af-
ter detection, two other software modules, the archiver
and the analyser, store away the event’s raw data, and
estimate and save the target parameters.

SD data should become available during 2005, within the
third phase of the ESA-EISCAT contract (ESA, 2004).

2. MEASURING SYSTEM

To be able to use our own data processing, optimized for
coherent signals, we use a special digital receiver back-
end, the space debris receiver. The signal to the SD re-
ceiver is branched-off from the EISCAT analog signal
path at the second IF (IF2) level. Fig. 1 shows the main
blocks of the SD receiver, connected to the EISCAT UHF
system at the Tromsø site.

The standard EISCAT data processing handles a multi-
frequency transmission by feeding the IF2 data to multi-

ple hardware channels, each tuned to a particular center
frequency. Our approach in the SD receiver is different.
We sample the analog IF2 band fast enough to capture the
relevant frequency channels into a single digital stream.
According to the bandpass sampling theorem, we need to
takeB million complex samples per second, in the mini-
mum, if the spread of frequencies isB MHz. For the most
common measuring mode, where EISCAT transmits on
two frequency channels, 300 kHz apart, we use 500 kHz
sampling rate in the SD receiver.

In addition to the standard reception, our data processing
requires the transmission waveform to be sampled. As
indicated in Fig. 1, EISCAT provides the analog trans-
mission sample signal (TS) time-multiplexed in the same
data path as the reception.

The core of SD receiver is a custom PCI board which per-
forms sampling, quadrature detection and sampling rate
reduction. The board was developed originally for iono-
spheric tomography by the now defunct Finnish company
Invers Ltd. The A/D converter on the PCI board samples
at 40 MHz. The resulting real-valued sample stream is
processed by programmable logic chips, from the Xilinks
SpartanXL family, to perform quadrature detection, es-
sentially by doing Hilbert transform. The result of the
transform is a complex-valued sample stream at 10 MHz
rate, representing the negative frequency part of the spec-
tral contents of the analog input. The chip then decimates
the 10 MHz stream to the final sampling rate. Typical
decimation factorD is 20, which yields the 500 kHz final
sampling rate. The decimation is done by adding samples
in blocks ofD; this ensures proper filtering.

The PCI board is mounted in a dual-CPU Mac G4
workstation, the measurement computer, running under
Mac OS X UNIX. There is a dual-CPU Mac G5 analy-
sis computer for target detection and parameter estima-
tion. The two workstations are connected by a giga-
bit Ethernet link. The measurement computer runs soft-
ware of Invers Ltd to read sample data from a buffer and
write them to a hard disk, mounted over the fast link
from the analysis computer. The raw data accumulation
rate with the 500 kHz sampling rate is 6.7 GBytes per
hour. After processing, we store permanently only about
10 seconds of raw data around each detected event, so
that 10 000 events, the anticipated annual quata, requires
about 200 GBytes of storage.

3. DETECTION AND PARAMETER ESTIMA-
TION

Assume first that the received, detected signals is just a
Doppler-shifted pulse train, ofM pulses of lengthL and
interpulse periodP ,

s(t) = b0

[
M−1∑
m=0

ε(t−mP )

]
eiω0t , (1)



whereε(t) is unity whent ∈ [0, L] and is zero other-
wise. The signal is phase-coherent. Denote byS(ω)
its Fourier-transform. The quantity|S(ω)|2/(ML) is the
power spectral density (PSD) of the signal. For any sig-
nal, the integral of the PSD, multiplied by the integration
time, gives the signal’s total energyEs. For the coher-
ent signal Eq. (1), the energy can also be found from the
maximum value of the PSD,

max
ω

|S(ω)|2

ML
= M · L|b0|2 = Es (2)

According to Eq. (2), the maximum of the PSD, achieved
at positionω = ω0, increases linearly with the number
of pulses included in the spectrum computation. Finding
the maximum of the PSD in this way achieves pulse-to-
pulse coherent integration. The timeTc = MP is the
integration time. Coherent integration is useful in detect-
ing a coherent signal in the presence of white noise, for
the signal PSD maximum value increases with integration
time, but the expectation value of the noise PSD iskTsys,
independent of the integration time (Tsys is the system
noise temperature). A suitable target detection criterion is
to require that the dimensionless “energy-to-noise-ratio”
ENR,

ENR =
Es

kTsys
(3)

exceeds some predefined threshold value. In our typical
measurements, we have found that we can use the thresh-
old value of 25, without much risk of false alarms. (Or at
least without much risk of false alarms due to the thermal
noise; but there are other sources of disturbances, such as
clutter from the ionosphere, which are more problematic
in our data, see Fig. 2.) At the EISCAT UHF radar, with
Tsys 100 K, transmission power 1 MW and duty cycle
10%,ENR = 25 corresponds to the coherent echo from
a 2 cm sphere at 1000 km range, integrated for 300 ms.

Another possibility to increase detection sensitivity is to
compute the PSD maximum forM pulses separately and
average the energy estimates. This we call non-coherent
pulse-to-pulse integration. For it, we require the signal
coherence only for each interpulse period separately, a
much easier requirement to fulfill. For instance, accelera-
tion correction such as used in Eq. (4) is then not needed.
Nevertheless, for coherent signals the coherent integra-
tion makes better use of available information, and is ex-
pected to result in better detection sensitivity and greater
parameter accuracy. To verify the fulfillment of the ex-
pectation, I have recently started to analyse our data also
with non-coherent integration. Although I hope that the
jury is still out, it appears that we have not gained much
sensitivity from the considerable effort we have invested
in the coherent integration, see Fig. 2–4.

The signal Eq. (1) is too simple as a model of the ac-
tual SD echo in EISCAT. A more realistic model takes
into account that the signal arrival time (target distance)
is unknown; that the Doppler-velocity cannot be taken
constant when longer integrations than just a few tens of
milliseconds are attempted; and that the signal typically

is phase-code modulated. To be able to apply coherent in-
tegration by maximizing the PSD, the signal is first trans-
formed to the simple form of Eq. (1). The unknown range
is taken care of by trying all relevant ranges. The phase
modulation is taken into account by multiplying the re-
ceived signal by the measured transmission sample signal
x(t), this will cancel the phase flips so that the product
will be of the typeε(t). Finally, we allow for a constant
rate-of-change of the signal’s Doppler-frequency during
the coherent integration, by multiplying the received sig-
nal by an acceleration terme−iαt2 , whereα is linearly
related to the radial acceleration of the target. Thus, we
compute the PSD from the modified signal

y(t) = z(t)x(t− 2R/c)e−αt2 , (4)

where we have also acknowledged that the signal we ac-
tually have available is nots but the noisy signalz(t) =
s(t) + γ(t). The factorML in the nominator of Eq. (2)
is generalised to

∫
|x(t)|2dt = ‖x‖2, so that instead of

maximizing |S(ω)|2/(ML), we perform coherent inte-
gration by maximizing the “match function” MF,

MF =
|Y (ω)|
‖x‖

=
|
∫

z(t)x(t− 2R/c)e−αt2 · e−iωtdt|
‖x‖

.

(5)
With the measured signalz(t) fixed, the MF is a function
of R andα, in addition toω. After subtracting the noise
background, we use the value of the MF2 maximum as
the estimate of the signal energy,

Ês = max
ω,R,α

MF2 − kTsys . (6)

The maximum’s location(ω̂, R̂, α̂) yields the target radial
velocity and acceleration, and the target range.

The denominator in Eq. (5) can be written succinctly as
the inner product|〈z, χ〉|, whereχ is

χ(R,ω, α; t) = x(t− 2R/c)eiαt2eiωt . (7)

The MF definition in Eq. (5) becomes

MF =
|〈z, χ〉|
‖χ‖

. (8)

The parametrized functionsχ represent possible received
signals, and are referred to as the model functions. We
can rephrase the MF method of parameter estimation
as the task of finding the best-matching model function
among the set of all model functions, in the precise sense
of maximizing the match functionMF(R,ω, α). The ex-
pression Eq. (8), or some near relative, is often called the
radar ambiguity function in the literature.

The MF is in practice evaluated based on the sampled
data vectorzn = z(nτs) and similarly sampled noise data
γn. We discretize theω variable in such a way that we
can use FFT in evaluating the Fourier-transformY (ω) in
Eq. (5). In detection, FFT of a data vector of the length on
the order of 100 000 points needs to be computed for each
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Figure 2. Detection with theMF algorithm. Data is from
EISCAT tau2 experiment, 12-Nov-2005. Sampling inter-
val 2 µs, coherent integration 312 ms.218 point FFT
was used to compute the MF velocity slice (power spec-
trum) v 7→ MF(R̂, v) shown in the bottom panel. The
25 × 106 operation computation required 44 ms on a
2 GHz Mac G5 workstation. To compute all the 1685
range gatesR of the curveR 7→ maxω MF(R,ω)/σ,
shown in the top panel, took 75 s. A target is detected at
rangeR̂ = 597.9 km, velocity 1.3km s−1, with energy-
to-noise ratio7.42. An effective diameter of 1.7 cm was
determined for this target.

of the typically 2000 range gatesRj , and then the maxi-
mum found according to Eq. (6). We should also vary the
acceleration parameterα, but so far we have takenα to
be a fixed, predetermined function of range,α = α(R),
computed by assuming that the target is on a circular or-
bit and the antenna is pointed vertically. Even then, the
straightforward detection computation comes too large
for a real-time application. Fig. 2 shows a typical ex-
ample, where it took 75 seconds to handle 0.31 seconds
of raw data on a G5 Mac.

The detection computation time can be reduced by more
than a factor of 100 by making use of special properties
of our measuring configuration in EISCAT, namely, that
we are using pulsed transmission with about 10% duty
cycle, so that most of the vector to be Fourier-transformed
is known to be zero, and also that the raw data is heavily
oversampled with respect to the expected target Doppler-
shifts. The FMF algorithm, sketched in Fig. 5, makes
use of these properties to reduce the length of the vector
to be actually Fourier-transformed by a factor of about
100. There is a penalty in terms of detection sensitivity,
but in practice the penalty is tolerable. Fig. 3 shows the
same raw data vector as in Fig. 2, now handled with the
FMF algorithm. The time required to handle the 0.31 s
of raw data has gone down from 74 s to 0.41 s. The latter
time actually already is sufficiently small for detection to
keep up with the incoming data flow, for we normally can
skip some data, say about 0.2 s in this case, between the
integrations.

We estimate the final target parameters (range, velocity,
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Figure 3. Detection with theFMF algorithm. A212 point
FFT was used for power spectrum computation, resulting
in more than 7 GFlops speed in the FFT itself. The other
operations involved in theFMF are slower, but the mean
performance was still about 2 GFlops. It took 0.23 ms to
compute the spectrum, and 0.41 s to go through all the
1685 ranges. The target range and velocity determined
from the FMF maximum location are not much differ-
ent from those given by the MF algorithm; the maximum
value has dropped from 7.4 to 5.8.

effective diameter) by re-scanning the event’s raw data
with maximal spatial and temporal resolution. For most
targets, the target’s beam passage results in time series
of range, velocity and energy-to-noise ratio; the final pa-
rameters we tabulate are fitted from the time series for the
time instant of maximum signal strength.

4. DATA

We performed our longest SD measuring campaign to
date from 09:02 UT, November 9th, to 14:00 UT, Novem-
ber 13th during a standard EISCAT “common mode” CP1
ionospheric experiment at the Tromsø UHF radar. The
EISCAT transmission was the so called tau2 transmis-
sion. The transmission alternates between the frequen-
cies 930.2 and 929.9 MHz, with an interpulse period of
5580µs. In each IPP, the transmission is a 576µs pulse,
binary phase coded with a 16-bit, baud length 36µs code.
The full set of codes used has 32 codes. The transmission
peak power was about 1 MHW during the campaign and
the system temperature about 120 K. The UHF antenna
was kept pointed along the magnetic field direction, az-
imuth 184.0◦, elevation 77.1◦. We used 2µs sampling
interval in the SD receiver, and performed the target de-
tection search with the FMF algorithm, over the range in-
tervals 354–735 km and 960–1575 km, using 1.5 km gate
separation; these are the lowest two intervals shown in
the top panels of Fig. 2–4. We noticed only afterwards,
when we had already disregarded most of the raw data,
and could no more re-analyze the data, that it would be
useful to extend the range coverage, and added a third in-
terval as shown in Fig. 2–4. We used detection threshold



597.9

Range (km)

Velocity (kms−1)

 

 

 

500 1000 1500 2000
0

0.5

1

1.5

2

 

 

!5 !4 !3 !2 !1 0 1 2 3 4 5
0

0.5

1

1.5

2

m
a
x

v
M

F
/
σ

M
F

/
σ

1.6

+1.30

1.6

Figure 4. Detection with non-coherent pulse-to-pulse in-
tegration. The 56 IPPs long data segment was processed
IPP per IPP by computing theMF, and the squares of the
individual MFs averaged. The figure shows the averaged
MF. The sensitivity corresponds roughly to the sensitiv-
ity of the FMF, but the computation time was about 10
times longer.

ENR = 5.02 from the range 500 km upwards, and a ramp
declining fromENR = 8.02 at 375 km toENR = 5.02 at
500 km. The ionosphere is often very visible in our data
(that is what the EISCAT radars and transmissions are
designed for), appearing as strong clutter in SD measure-
ments below about 500 km range and its range aliases. It
is necessary to use range-dependent detection threshold
in order not to waste detection sensitivity.

In the November campaign, our software allowed the raw
data collection and target detection to proceed on-line,
automatically and without hickups. The final event selec-
tion and parameter estimation still involved some man-
ual work. Timewise, the software can handle also these
phases in real-time, but the event selection algorithm can-
not handle reliably problems due to the non-thermal ir-
regularities in the data. We got 1518 events, plotted in
Fig. 6.1 The top panel shows the effective diameter of
the targets, as based on the measuredENR and range,
and the known radar parameters. The effective diameter
is the diameter of the conducting sphere that would cause
the observedENR if placed at the measured range in the
center of the antenna beam. Most of the targets will not
actually be in the center of the beam (the half power beam
width at UHF is 0.6◦), but in EISCAT, it is not possible
to determine the target’s position within the beam, and
therefore only a lower bound of the target’s radar cross
section, and the effective diameter, can be deduced.

The effective diameters plotted in Fig. 6 are deduced from
the ENR estimated using 300 ms,FMF-based, coher-
ent integration. However, it seems that the coherent in-
tegration efficiency is already considerably reduced from
100% at this integration time. It is not evident to me how
to best estimate quantitatively the efficiency of the co-
herent integration (nor of the non-coherent integration).

1These data are available via http://www.sgo.fi/ jussi/spade/.
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Figure 5. The FMF algorithm. For each ofM trans-
mitted pulses included in the coherent integration (M=3
in the figure), one first forms the point-wise productw
of the receptionz and the shifted, complex-conjugated
transmissionx. Next, for each pulse,w is decimated by
adding neighboring samples, and the decimated vector
multiplied by an appropriate mean acceleration correc-
tion factor to get the vectorw′. Finally, theM vectorsw′

are simply concatenated to form the FFT input vectorw′′

for the power spectrum estimate.

Simulations indicate that unless the signal is strong, or
the integration time is long, even for a fully coherent sig-
nal theENR estimate is biased so that the apparent value
is too large. This leads to toolarge effective diameters.
On the other hand, the assumed signal models usually
will tend to be the more incorrect the longer the integra-
tion time. This effect tends to produce toosmalleffective
diameters.

In the ideal case, the measuredENR should increase lin-
early with the integration time. What happens with the
actual data is shown in Fig. 8. I re-analysed a data set of
about 400 events, originally detected and analysed with
300 ms integration, using 17 integration times from 45 ms
to 670 ms. For each target, its vector of 17ENR values
was normalized to unity at 89 ms integration time. The
large dots in Fig. 8 give the mean of the normalized vec-
tors. For short integration times, the mean vector displays
some of the expected trends, namely, theENR increases
roughly linearly, and also, appears to have a positive bias
for the very shortest integrations. But then theENR esti-
mate rapidly saturates at about 200 ms, and starts slowly
to decrease.

One way how the coherent integration can fail in such a
sudden manner is if the radial acceleration that we as-
sume in theFMF computation is not correct, but has
an error∆a. The set of the closely spaced curves in
Fig. 8 gives the theoretically expectedENR when ∆a
is 7 m s−2. The different curves correspond to different
values of the assumed velocity error∆v. A wrong, fixed
value of the acceleration will be partly compensated in
the MF maximization by a slightly wrong velocity pa-
rameter. For instance, the thick curve in the figure, peak-
ing at about 200 ms, corresponds to the velocity param-
eter error∆v = −∆aTc/2. This ∆v makes the mean
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EISCAT’s 16 hour participation to the 2004 ”beam park”
SD measurement, 7th September 2004. The experiment
was EISCAT’s long-range standard experiment, tau1,
which does not have a blind spot around 800 km as tau2
does. The antenna was pointed to azimuth 133◦, eleva-
tion 62◦. 364 targets were detected in the altitude inter-
val shown in this plot. The data were processed with the
FMF algorithm.
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Figure 8. Loss of coherent integration efficiency due to
wrong acceleration value in the signal model. The data
points (dots) are from a 16 hour “beam park” measure-
ment at EISCAT UHF radar in September 2004. The
curves are theoretical shapes ofMF2, computed assum-
ing the fixed difference∆a = 7 m s−2 between the actual
target radial acceleration and the model signal accelera-
tion, and various values of the radial velocity difference.

velocity of the model signal to be correct during the inte-
gration. The dashed curve in the figure corresponds using
the correct target velocity. The other curves represent in-
termediate situations. The figure suggests that it is indeed
possible that an acceleration error contributes to the sud-
den loss of integration efficiency. On the other hand, the
persistently high values of the observedENR at long in-
tegrations are not explained by this model.
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