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1 Overview

1.1 Introduction

It is estimated that there are approximately 200,000 objects larger than 1 cm currently
orbiting the Earth, as an enduring heritage of four decades of space activity. This
includes the functioning satellites, but by far most of the objects are what is called
space debris (SD), man-made orbital objects which no longer serve any useful purpose.
Many of the small-sized (less than 10 cm) particles are due to explosions of spacecraft
and rocket upper stages, but there are also exhaust particles from solid rocket motors,
leaked cooling agents, and particles put into space intentionally for research purposes.
The large (> 10 cm) objects have known orbits and are routinely monitored by the US
Space Surveillance Network, but information of the smaller particles is fragmentary and
mainly statistical. Especially, in Europe there is no radar that is routinely used for
monitoring small-size SD.

In 2000-2001, we, together with our colleagues from Sodankylä Geophysical Observa-
tory, undertook a study for ESA about the feasibility of using the EISCAT ionospheric
research radars for space debris measurements [3]. Since the early 1980’s, the EISCAT
mainland radars—the Tromsø UHF radar at latitude 69.6◦N, operating at 930 MHz and
the VHF radar operating at 225 MHz—have been performing ionospheric measurements
to the order of 2000 hours per year; and since the late 1990’s, after the EISCAT Sval-
bard radar (latitude 78.2◦N) became operational, EISCAT has been measuring more
than 3000 hours annually. The interest is to use a substantial amount of these oper-
ating hours for simultaneous space debris measurements in a cost-effective way. In the
initial study, we showed that it is feasible, and technically straightforward, to perform
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1 Overview

SD measurements in parallel with normal EISCAT ionospheric measurements, without
interfering with those measurements [8].

Our measuring approach is to operate a separate digital receiver back-end, which we
call the SD receiver, in parallel with EISCAT standard digital receiver. This allows us
to implement our own, amplitude domain data processing, which we call the the match
function or matched-filtering (MF) method. The MF method makes use of the long
coherence time of a signal reflected from a small target to increase detection sensitivity,
via pulse-to-pulse coherent integration. To make the hardware as simple and cheap
as possible, the custom-made part of the SD receiver is basically just a fast sampler
and digital demodulator; the MF computations are done in fast but still cheap general
purpose workstations. The SD receiver samples the EISCAT analog signal, at the second
intermediate frequency (10 MHz) level, fast enough to capture the relevant frequency
channels into a single digital stream, without doing the customary channel separation.
Typically during a measurement, we sample at the rate of about a million complex
samples per second continuously, producing more than 10 GBytes of data per hour.
Early on, ESA suggested that we should strive to do the data analysis in real-time so
that the raw data could be quickly disregarded.

A straightforward implementation of the MF method involves Fourier-transforming
long data vectors, a few thousand times per every second of raw data; basically, one
is computing power spectra for a relatively large number of range gates. At the Space
Debris III conference in 2001, we had to concede that with the processing speed that
we had achieved at the time, it would take several centuries of CPU time to analyze
just one year’s quota of EISCAT space debris measurements. However, soon afterwards,
M Lehtinen of Sodankylä Geophysical Observatory, who was the project leader of the
precursor study, realized that by accepting some loss of detection sensitivity and a small
bias in the velocity estimate, it would be possible to speed up the MF computation
drastically, typically by more than two orders of magnitude. We use the term fast match
function algorithm (FMF) for the resulting computing scheme.

The results of the initial study were encouraging. The achieved detection sensitivity
was equivalent to being able to observe spherical targets with diameters of about 2 cm
from 1000 km range. With the advent of the FMF-algorithm, the processing speed,
though still sluggish, was starting to become useful. In 2003, ESA commenced the
present study, to bring the analysis of large amounts of EISCAT SD data up to real-
time speed [4]. The study has achieved the necessary processing speed. In addition to
the factor of 100 delivered by the FMF algorithm, we now use computers that are about
ten times faster than what we had available in 2001. A final required factor of ten was
obtained by coding the MF and FMF algorithms in C instead of Matlab.

The EISCAT system [1, 2, 10] consists of three separate radars: monostatic VHF
radar, located near Tromsø, Norway, and operating at 224 MHz; monostatic but two-
antenna EISCAT Svalbard Radar in Longyerbyen, Svalbard, operating at 500 MHz; and
tristatic EISCAT UHF radar at 930 MHz, with transmitter in Tromsø and receivers in
Tromsø and in Kiruna, Sweden, and Sodankylä, Finland. All the transmitters operate
in the megawatt peak power range and routinely utilize high (10–20%) duty cycles.

Even though routinely picking-up hard target echoes, standard EISCAT data process-
ing is not optimized for hard targets. The characteristic feature expected from small
hard targets is a long signal coherence time, several hundred milliseconds. By a signal’s
(phase-) coherence we mean that the signal phase φ0(t) obeys a deterministic functional
form for some length of time, the coherence time.
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1.1 Introduction

EISCAT’s normal ionospheric signal has coherence time of less than a millisecond
in most parts of the ionosphere. This time is much shorter than the interval between
transmitted pulses, the interpulse period (IPP), which in EISCAT typically is 5–10 ms.
Therefore, echoes from individual pulses are uncorrelated, and can only be added up in
the power domain. This is done by computing, for each of the received pulses separately,
signal autocorrelation functions, or, equivalently, power spectra, for a set of range gates,
and then adding these power-domain quantities. This is called non-coherent pulse-to-
pulse integration. We note that within a single transmission-reception (T/R) cycle,
computing range-gated power spectra achieves coherent integration of the samples. For
a single non-coded pulse, the MF method, too, in effect just computes range-gated power
spectra.

To achieve coherent integration from pulse to pulse, the MF method adds the echoes
from different T/R cycles in amplitude domain and takes care that the pulses are added
with equal phase. The method, in essence, removes all phase variation from the signal
before adding the samples. This is achieved by guessing the phase factor eiφ0(t) of the
signal, and canceling it by multiplying the signal by the complex conjugate of the guess,
e−iφ0(t). The guesses in our implementation are generated by brute force. We search
through a large set of parametrized model functions, and use the one which achieves
best cancellation of the phase, that is, which results in the largest integrated amplitude.
After the phase variation has successfully been removed, the remaining part of the signal
can be safely integrated, both within a single pulse, as well as from pulse to pulse.

As long as the signal stays coherent (obeys the assumed model), coherent integration
suppresses the non-coherent background noise, so that the effective signal-power to noise-
power ratio increases directly proportionally to the number of pulses integrated. This
increases detection sensitivity. Non-coherent integration, instead, does not increase the
signal-to-noise ratio (but it, too, increases the detection sensitivity, by reducing the
likelihood of false alarms). The drawback in coherent integration, in addition of it being
computationally more demanding due to the long data vectors, is that if the signal
model is not accurate, the ensuing phase error will start eating into the integrated
signal amplitude, rendering longer integration useless.1 In our case, coherent integration
beyond about 300 ms does not seem to improve detection sensitivity.

Part of the reason for the unexpectedly short apparent coherence time is that, although
we (see section 2.3) will derive a signal model that should be fairly accurate for small
structureless targets, for performance reasons we cannot actually use the ideal model.
The approximative model that we do use, both in the MF and FMF algorithms, is best
suited for narrow-band (single-frequency-channel) transmissions. The different frequency
channels in a multi-frequency signal will have slightly different Doppler-shifts because
the Doppler-shift depends on the transmission frequency. It is impossible to cancel the
Doppler phase factors simultaneously using only the single model phase factor which is
available in the approximative model.

We derive in section 2.1 the MF method via Bayesian statistical inversion. Within the
Bayesian approach, the estimates for the basic parameters range, radial velocity, radical
acceleration, and signal amplitude or signal total energy, are found as the most probable
values, given the measured noisy signal. With our assumptions, this solution is also the
one that minimizes the least squares norm between the measured signal and the set of

1We admit that there may be a grain of truth in the statement in a recent book which claims that
“most radars utilize non-coherent integration”, because “maintaining coherency [. . .] is very costly
and challenging to achieve.” [7]
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1 Overview

model functions; the solution is also the maximum likelihood solution.
We have, in four measurement campaigns during the two years of this study, collected

and analysed about 150 hours of data, all at the EISCAT UHF radar in Tromsø. These
data have been taken mostly for method development and verification purposes; assessing
any possible physical significance of the about 2500 events that we have accumulated
is outside the scope of this work. By way of example only, we will show some of the
analysis results in chapter 4. We show that the peak detection rate is about 2.5 events
per hour per 50 km bin near 1000 km altitude (Fig. 8 on p. 26). We show that we
observe events down to effective diameter of about 21–22 mm at 1000 km range (Fig. 9
on p. 27). We must emphasize, however, that all our results concerning target sizes are,
at best, lower bounds; we cannot say anything about the actual target cross sections.
For perhaps the single major deficiency in EISCAT, compared with some other radars
used for space debris observations, is that the EISCAT antennas do not have monopulse
feed. At the moment at least, there is no way that would allow pinpointing the actual
direction of the target within the radar beam, and so the target’s radar cross section
cannot be deduced from the measured signal strength. We hope that in the future we can
partly alleviate this problem by collecting fairly large amounts of data—perhaps about
10,000 events per year—so that the antenna beam pattern can be taken into account
statistically, and meaningful comparisons to space debris models made. Finally, we also
plot target velocity and acceleration as function of altitude (Fig. 10–11).

1.2 Study objectives

According to our contract agreement with ESA/ESOC [4], the objective of this study
was
“To develop methods to perform real-time detection of small-sized debris objects in LEO
during routine EISCAT operations. The new methods shall be based on the capabilities
(soft- and hardware, as well as data processing procedures) for debris detection that
have been developed in the precursor study. The routine real-time detection shall be
demonstrated during standard EISCAT experiment campaigns.”

1.3 Summary

After a feasibility study in 2000–2001 about using EISCAT radars to detect centimetre-
sized space debris in the frame of an ESA contract, the present study was aimed at
boosting the debris detection and parameter estimation to real-time speed. A require-
ment in the work is to piggy-back space debris measurements on top of EISCAT’s normal
ionospheric work, without interfering with those measurements, and to be able to handle
on the order of 500 hours of measurements per year.

We use a special digital receiver back-end in parallel with EISCAT’s standard digital
receiver. We sample fast enough to correctly band-pass sample the EISCAT analog
frequency band at the second IF level. To increase detection sensitivity, we use amplitude
domain integration—coherent pulse-to-pulse integration—of the samples. The coherent
integration is built into our method of target parameter estimation, which we call the
MF method, for match function or matched filtering. The method is derived from
Bayesian statistical inversion. With common assumptions about the noise and the prior,
the method reduces to minimizing with respect to the parameters amplitude b, range R,
radial velocity v and radial acceleration a the norm ‖z(t)− bχ(R, v, a; t)‖, where z is the
measured signal and bχ(t) is a model signal. Because the model signal depends linearly
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on b, it is sufficient to maximize the magnitude of the inner product between z and χ,
the amplitude estimate is then determined by direct computation. The magnitude of
the inner product, when properly normalized, is the MF.

Our original Matlab implementation of the MF method in the precursor study was
about four orders of magnitude too slow for real-time applications. In this study, we have
gained the required speed factors. A factor of ten comes from using faster computers,
another factor of ten comes from coding our key algorithms in plain C instead of Matlab.
The largest factor, typically 100–300, comes from using a special, approximative, but
in practice quite sufficient, method of finding the MF maximum. Test measurements
show that we get real-time speed already when using a single 2 GHz dual-processor
G5 Macintosh to do the detection computations.

The measurement campaigns also show that the achieved sensitivity at the EISCAT
UHF radar, which has a radar wavelength of 32 cm, corresponds to detecting a 2.2 cm
diameter target at the range of 1000 km. We register typically 15–25 targets per hour in
the 500–1500 km altitude band. A final 101 h debris measurement campaign, conducted
in parallel with a standard EISCAT ionospheric experiment in November 2004, confirmed
that we can now handle longish measurements essentially in real-time.

There remain partially open issues, like the efficiency of the coherent integration in
the theory sector; the need for more robust and automated execution of the experiments
in the software sector; and the need to ensure the availability of eventual replacement of
our special receiver in the hardware sector. Nevertheless, we are now technically in the
position to start routine space debris measurements with the EISCAT system.

2 Theory

2.1 The match function method

We want to estimate the parameters of a hard target echo signal s(t) in the presence
of white gaussian noise γ(t), of variance σ2, in an optimal way. We denote by z(t) the
received signal,

z(t) = s(t) + γ(t) . (1)

We denote by x(t) the transmission sample signal (the signal labeled by TS in Fig. 5
on p. 19). We ignore the frequency translations done in the actual space debris receiver
and treat all these quantities as complex-valued (demodulated) signals.

To find an optimal estimate, we will use the approach of Bayesian statistical inversion.
The basic idea is to use a parametrized model for s and find the most probable signal
among the model signals, given the measured signal z. We specify the model signals
explicitly in section 2.3. Here we will make use only of the property that the model
depends linearly on one parameter, the complex amplitude b, and in addition depends
on some other parameters (range R, radial velocity v and radial acceleration a in our
case), which we collectively denote by θ, so that

s(t) = b · χ(θ; t). (2)

We sample z(t) using sampling interval τs and get N samples zn during a time interval
Tc, the integration time.
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2 Theory

After a measurement has produced a result, the vector z, some signal parameter values
(b, θ) will be considered more likely than others, in a way that depends on z. The prob-
ability of the parameter values is described by a conditional probability density, with
z as the condition. In the Bayesian world view, that density is termed the posteriori
density, and we denote it here by Dp(b, θ|z). The inversion problem is to utilize the
measurement result to find the posteriori density. The posteriori density is the most
complete inference that can be made about the parameter values, based on the measure-
ment. Normally, one wants to condense the inference to single numbers, the parameter
estimates, together with some simple measures of errors like some confidence intervals.
There is no unique way to select “best” estimates, but the standard Bayesian criterion
is to use the most probable values, that is, the maximum of the posteriori density:

(̂b, θ̂) = arg max
b,θ

Dp(b, θ|z). (3)

We now derive the posteriori density. We denote by D1(zn|sn) the conditional proba-
bility density of zn, given sn. This is just the probability distribution of the value of the
nth noise sample γn = zn − sn,

D1(zn|sn) =
1

πσ2
e−

1
σ2 |zn−sn|2 . (4)

We assumed that the noise is white so that the noise samples are uncorrelated. Then the
conditional joint probability density to produce a particular measurement result vector
z if the actual signal vector is s, is

D(z|s) =
N−1∏
n=0

D1(zn|sn) =
1

(πσ2)N
· e−

1
σ2 ‖z−s‖2

. (5)

The density D(z|s) is called the direct theory. Given the direct theory, the Baysian
solution to the inversion problem is

Dp(b, θ|z) = C ′(z) ·Dpr(b, θ) ·D(z|s). (6)

Here C ′(z) is a normalization factor. The new factor, Dpr(b, θ), is called the prior density.
The prior density is a weight that can be used if it is known a priori—before making the
measurement—that some particular signals s(b, θ) tend to occur more frequently than
some others.2 Using a non-trivial Dpr might actually make sense when measuring space
debris, to throw out detections with highly unlikely parameters. But so far we have
assumed a constant prior. For a constant prior, it follows from Eq. (6) and Eq. (5) that
the sought-for posteriori density is

Dp(b, θ|z) = C(z) · e−
1

σ2 ‖z−b·χ(θ)‖2

, (7)

where C(z) is a normalization factor. It follows from Eq. (7) that finding the most prob-
able signal parameters amounts to minimizing the distance between the measurement
and the models,

(̂b, θ̂) = arg min
b,θ

‖z − b · χ(θ)‖ . (8)

2Dpr(b, θ) is, by definition, equal to the marginal density
R

Dtot(b, θ, z) dz of the probability distribution
Dtot(b, θ, z), the probability distribution of the whole system, which contains on equal footing both
the measurement results z and the signals s(b, θ).

8



2.1 The match function method

Cχ(θ)

Cχ̂

M

z

χ̂ = χ(θ̂)

χ(θ)
ŝ

0

Figure 1: Geometric interpretation of the MF method. The sought-for best estimate of
the signal is the point ŝ in the set M of model functions that is nearest to the
measured signal z. The set M consists of rays Cχ = {aχ : a ∈ C}, generated
by a set of basic model signals χ(θ). The MF(θ) is defined as the length of the
orthogonal projection of z onto the ray Cχ(θ). Maximizing MF(θ) gives the
ray Cbχ that gets as near to the point z as is possible in M. The estimate ŝ is
the orthogonal projection of z onto Cbχ.

A straightforward approach to the minimization problem expressed in Eq. (8) is to
discretize the parameter space and perform an exhaustive search. We now show that
the search space dimension can be reduced by one by making use of the property that
the amplitude b enters the problem linearly. Our result can be confirmed analytically,
but will be here reasoned from basic vector geometry. Referring to Fig. 1, the set M
of model vectors {b χ(θ)} consists of 1-dimensional rays Cχ through the origin of N -
dimensional complex vector space CN . The rays are generated by a set of basic vectors
χ(θ). According to Eq. (8), we need to find the shortest distance between the measured
point z and M. The figure suggests that we first find the ray Cbχ that is as parallel as
possible with the vector z; then the point in M that is nearest to z is the orthogonal
projection ŝ of z onto Cbχ,

ŝ =
〈z, χ̂〉
‖χ̂‖2

χ̂ . (9)

So the real problem is to find the maximally parallel ray. With z fixed, a sufficient mea-
sure of parallelism of a ray Cχ and the vector z is the length of the orthogonal projection
of z onto χ; the ray is the more parallel or antiparallel, the longer the projection. This
particular measure of parallelism is what we call the match function MF,3

MF(θ) =
|〈z, χ(θ)〉|
‖χ(θ)‖

. (10)

We get the maximally parallel model vector χ̂ = χ(θ̂) by maximizing the function MF(θ):

θ̂ = arg max
θ

MF(θ) . (11)

3Intuitively, the more parallel two signal vectors (functions) are, the more they presumably look alike,
which is one reason for our nomenclature. A more serious reason is that MF stands for matched filter.
With velocity and acceleration fixed, so that MF is function of the range variable only, R 7→ 〈z, χ(R)〉
amounts to ordinary filtering of z by the filter h(t) = χ(0)(t) that is matched to the transmitted signal.
The MF is a generalization of this concept to more general kind of pattern matching.
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2 Theory

How the maximum is computed in practice is discussed in section 2.4; basically, we
perform an exhaustive search over a grid of values of θ.

2.2 Energy-to-noise ratio and detection threshold

The energy Wy of any correctly sampled complex-valued voltage signal y(t) is

Wy =
∫
|y(t)|2dt = τs

∑
|yn|2 = τs‖y‖2 . (12)

From Eq. (9)–(11), the energy Wbs of the signal estimate ŝ is

Wbs
τs

= ‖ŝ‖2 =
|〈z, χ̂〉|2

‖χ̂‖2
= [MF(θ̂)]2 = maxMF2. (13)

In all our data analysis we have used Wbs as the estimator of the signal energy Ws.
We summarize the match function method of parameter estimation

• Get the signal parameters θ by locating the position of MF maximum, Eq. (11).
• Get the signal energy as the square of the value of the MF maximum, Eq. (13).

A noise-free MF is useful for theoretical considerations. Without noise, both factors in
the inner product in Eq. (10) are model functions. We reserve a separate notation, AF,
and use the standard name, ambiguity function [9], for the noise-free match function,

AF(θ0; θ) =
|〈χ(θ0), χ(θ)〉|

‖χ(θ)‖
. (14)

In the MF method, target detection is based on the estimated signal energy Wbs ex-
ceeding a threshold. We have so far set the threshold, by visual inspection of the data, to
be so high that there are only very few false alarms. We need to use a range-dependent
threshold, because the lower altitudes, typically up to about 500 km, are often affected
by strong clutter from the ionosphere, and need a higher threshold.

We set the detection threshold in terms of a dimensionless quantity, the ratio of signal
energy to the noise power spectral density (PSD) Gγ . We call this ratio the energy-to-
noise ratio, and denote it by SNRN,

SNRN =
Ws

Gγ
. (15)

We assume that the system noise temperature Tsys is defined in such a way that the
noise PSD density of complex-valued wide-band noise can be written as

Gγ = kTsys , (16)

where k is the Boltzmann constant. The power of such a noise after being filtered with
a boxcar-shaped low-pass filter that extends from frequency −B/2 to B/2 is

Pγ = kTsysB. (17)

The digitally implemented filter in the SD receiver is boxcar-shaped in time, not in
frequency. Its impulse response has constant value 1/τs and duration τs. For such a
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2.3 Signal model

filter, it can be shown that the noise-equivalent bandwidth Beq is equal to the sampling
frequency, so that, on the one hand we have

Beq =
1
τs

, (18)

and on the other hand, Beq also satisfies Eq. (17), by definition of the noise equivalence.
From Eq. (16)–(18) and (13) we get

Wbs
kTsys

=
Wbs ·Beq

kTsys ·Beq
=

(max MF2 · τs) · (1/τs)
Pγ

=
max MF2

Pγ
. (19)

We treat the system temperature as a known radar parameter, and use Eq. (19) with
the measured max MF and Pγ to find the signal energy Ws in physical units. We use
that estimate to find a lower limit, RCSmin, for the target’s radar cross section (RCS).
From the standard radar equation it follows

RCS =
(4π)3 kTsys ·R4 ·Ws

G(φ)2 · λ2 · Px · DTc
. (20)

Here R is target range, λ is radar wavelength, Px transmission power, D transmission
duty cycle so that DTc is the actual length of transmission during the integration Tc.
The factor G(φ) is the antenna power gain in the direction of the target within the
radar beam, an angle φ offset from the known direction of the antenna optical axes. In
the EISCAT system, it is normally not possible to find the offset angle. As a way of
cataloguing the observed signal strength, we therefore normally quote RCSmin, which
we get from Eq. (20) by setting φ = 0.

The energy estimate Wbs defined in Eq. (13) is a biased estimate. In typical situations,
the expectation value EWbs/τs is larger than Ws/τs by as much as about ten times the
mean background noise power Pγ . The positive bias in the energy estimate means that
the RCSmin is not quite as bad a substitute for the RCS as it would otherwise in most
cases be.

2.3 Signal model

We model the phase of the received SD echo s(t) by assuming that the phase behaves as
if the signal would reflect from a mirror that moves with constant radial acceleration a0.
We will assume that during an integration time Tc the signal amplitude b stays constant.
With x(t) the transmission sample signal and t′ the delayed time, with reference to Fig. 2
we take

s(t) = bx(t′) . (21)

For any given target radial motion r(t), the delayed time is determined by

t− t′ =
2r( t′+t

2 )
c

. (22)

With constant radial acceleration, the target range is

r = r(R0, v0, a0; t) = R0 + v0t +
1
2
a0t

2 . (23)
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2 Theory

0

range

time

r = R0 + v0t +
1

2
a0t

2

t
′

t
t
′ + t

2

Figure 2: Transmitted wave reflected from a point-like target which is moving with con-
stant radial acceleration a0. The parabola shows the radial component of
the target’s position vector in the coordinate frame of a stationary radar an-
tenna, during the few hundred milliseconds of a coherent integration. The
full three-dimensional velocity vector typically is very nearly constant in that
frame during the integration time. The integration starts at time 0 with the
transmission of the first pulse belonging to the integration. At the start of the
integration, target range is R0 and radial velocity is v0. The diagram is not
drawn to scale.

For the motion (23), Eq. (22) is quadratic in t′. The solution of the equation for the
pulse propagation time t− t′, with an appropriate choice of the sign of the square root,
is

t− t′ =
2c

a0

{
1 +

v0

c
+

a0

c
t−

[
1 +

2v0

c
+

(v0

c

)2
+

2a0

c
(t− R0

c
)
] 1

2

}
. (24)

Equation (24) can be simplified by expanding the square root [. . .]
1
2 into a power series.

Care must be exercised regarding to which terms can be dropped from the expansion.
With parameter values that are typical at EISCAT UHF when antenna is pointed nearly
vertically,

R0 ≈ 106 m ,

v0 ≈ 103 m s−1 ,

a0 ≈ 102 m s−2 ,

ω1 ≈ 6 · 109 Hz ,

all terms following the “1” inside the square brackets in Eq. (24) are quite small compared
to unity. But what actually determines which terms X can be ignored, is the requirement
that the corresponding phase factor ω1

2c
a0

X, where ω1 is the radar transmission frequency,
stays very small during the integration time. Using the first three terms of the power
series expansion of [1 + (. . .)]

1
2 , and then dropping all the individual terms for which

the corresponding phase factor is less than 0.1 rad when integration time is less than a
second, we are left with

t− t′ ≈ 2
c

[
R0 + v0t +

1
2
a0t

2 − (v0 + a0t)
R0

c

]
(25)

=
2
c

[
R0 + v0(t−

R0

c
) +

1
2
a0(t−

R0

c
)2

]
(26)

=
2
c
r(t− R0

c
) . (27)
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2.4 Computational aspects

The term −R0
c is a natural first order correction to the time instant of pulse reflection;

the only non-trivial aspect is that this correction already is sufficient (for our typical
measuring configurations). Thus, the model functions χ(R, v, a; t) to be used in the
MF computation, Eq. (10), are of the form

χ(R, v, a; t) = x(t− 2
c

r(R, v, a; t− R

c
)) . (28)

It should be noted that nothing has been assumed about the transmission x(t) in this
derivation so far. In principle, as long as the transmission can be accurately measured via
the transmission sample signal, we do not even need (ever) to know what transmission
has been used; the MF machinery incorporates the transmission transparently. This is a
good thing for automated piggy-back measurements, where we do not have any control
on the transmission EISCAT might be using at any given time.

The reality, of course, is somewhat different. A basic problem is that the radar’s noise-
environment is often poorly approximated by our assumption that it consists only of
stationary gaussian noise. Distortions occur in practice, one of them being the ionosphere
becoming visible in the SD data. More or less ad hoc, manual, experiment-specific
solutions are used to counter these problems. Also, we cannot at the moment handle the
case that the antenna pointing may change during a measurement; but many EISCAT
measurements use cyclical antenna pointing schemes. In practice, both now and into the
foreseeable future, we need to know beforehand the EISCAT measurements that we are
making use of in the SD work.

2.4 Computational aspects

Here we derive the approximation for the signal model, which we have been using in our
work so far. Assume that the transmission can be described as

x(t) = ε(t)eiω1t , (29)

where ω1 is the carrier frequency, and the transmission envelope ε(t) is a slowly changing
function, describing, say, a binary phase modulation, as is often the case in EISCAT.
This description is good for a single-frequency-channel transmission. We ignore the
correction −R/c to the pulse reflection time in Eq. (28), and use the special form Eq. (29)
of the transmission to write the model function as

χ(t) = ε(t− 2
c
r(t)) eiω1[t− 2

c
r(t)] . (30)

Inside the slowly varying transmission envelope we can assume r(t) stays constant,
r(t) = R, during the integration time. Then, from Eq. (30) and Eq. (29), it follows
that

χ(t) = x(t− 2R

c
) ei(ωDt+αDt2) , (31)

where ωD = −ω1
2v
c and αD = −ω1

a
c are the Doppler-frequency, and the rate of change

of the Doppler-frequency, which we will call the Doppler-drift, respectively. The ap-
proximation (31) is often used in the literature (usually without the drift term), and is
described by saying that the received signal is a delayed-in-time, Doppler-shifted replica
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2 Theory

of the transmission. With the signal model (31), the MF definition in Eq. (10) can be
expanded for continuous-time signals as

MF(R, v, a) =
|
∫ Tc

0 z(t)x(t− 2R
c )e−i(ωDt+αDt2) dt|
√

Wx
, (32)

where Wx =
∫
|x(t)|2dt is the energy of the transmission sample signal.

For signal vectors, we need to take into account that the transmission samples xn are
only available at times nτs. This already forces us to discretize the range variable. With

Rj = j · cτs

2
(33)

the match function becomes

MF(Rj , v, a) =
|
∑N−1

n=0 znxn−je−i(ωdn+αdn2)|
‖x‖

, (34)

where the normalized Doppler-shift and Doppler-drift are

ωd = −ω1τs
2v

c
, (35)

αd = −ω1τs
aτs

c
. (36)

At the points

vk = k
2πc

ω1Tc
(37)

Eq. (34) can be written as

MF(Rj , vk, a) =
|
∑N−1

n=0 (znxn−je−iαdn2
)e−i 2πkn

N |
‖x‖

, (38)

which shows that at these points the MF can be evaluated using FFT. The denominator
‖x‖ is the square root of transmission sample energy, and is (of course) independent of
R, v and a.

In most of our data analysis, we have taken the radial acceleration to be a deterministic
function of range, a = a(R). We have used the acceleration that corresponds to the target
being on a circular orbit and the antenna being pointed vertically. Experimentation with
real data has shown that not much sensitivity is lost in practice even if the acceleration
is not varied.4

In the routine analysis therefore, we search the MF maximum only over the (Rj , vk)-
grid. Even then, the detection computations, using full resolution and without any
further approximation, become too large. Assume we want to cover 1000 km in range
and use 0.3 s coherent integration. Assume that the sampling interval is 0.5 µs. Then the

4Which is perhaps a bad sign, because a priori, we expect the MF maximum value to be rather sensitive
to the acceleration being correct. For instance, inspection of the ambiguity functions indicate that
with 0.3 s integration, a 10 m s−2 error in a would cause the coherently integrated amplitude to drop
by about 50% from the ideal case. That this appears not to happen when we vary the acceleration in
the analysis of real data, suggests that there are other factors that are causing the signal model to be
incorrect to begin with. One of these factors is related to multi-frequency transmission, as discussed
in section 2.6.
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2.5 The fast match function algorithm

input data vector is 600,000 points, and the FFT requires about 60 million floating-point
operations. The 1000/0.075 ≈ 13, 000 range gates require about 800 × 109 floating-point
operations. On a dual-processor 2 GHz G5 Mac, we get about 1 GFlops combined speed
in FFT of this length, so we will need about 800 s to handle the 0.3 s of data. A normal
EISCAT UHF phase-coded transmission uses baud length of about 20 µs or more. For
these modulations, we can safely relax the range gate separation in the detection phase
somewhat, say by a factor of 10 (this also ensures sufficient Doppler-frequency coverage).
But this still leaves us more than two orders of magnitude short of real-time speed.

2.5 The fast match function algorithm

Since spring 2001 we have used the fast match function algorithm, FMF, for all our
practical target detection computations. We showed in [8] that in practice we do not
lose much accuracy even if we use the FMF also for parameter estimation, at least when
the estimates can be done by fitting to multiple points of time series data. (Things might
be different when we only have a single point available—as can happen for the weakest
signals.) By using the FMF, which is about 300 times faster than the MF in a typical
situation, we can easily achieve real-time speed for the overall data processing. When
we want to use MF for parameter estimation, we do that offline.

The original purpose was to use the FMF for target detection purposes. Therefore, the
FMF was designed to give a good approximation of the MF near its absolute maximum
position. Especially, to preserve detection sensitivity, it is important that the FMF
achieves coherent integration to a good approximation. If there is only a single frequency
in the transmission, it can be shown that maxFMF is not smaller than about 60% of
the fully coherently integrated amplitude. We will comment on the more realistic case of
dual-frequency transmission in the next section; the result is that even in multifrequency
situation, the FMF is not seriously worse than the MF, but then both algorithms will
fall short from fully coherent integration.

We make use of two special properties of our measuring situation in EISCAT: the
property that we are using a pulsed radar; and the property that the space debris
receiver “oversamples” the debris signal heavily. The quotes are needed, for the high
sampling rate is necessary to correctly sample the multi-frequency transmission. But
we are oversampling with respect to the Doppler-shifted, inherently narrow-band signal
on any given frequency channel. The time consuming part of the MF evaluation is to
compute the velocity slices, that is, the power spectra for a set of range gates. We make
use of the two properties to drastically reduce the length of the FFT input vectors.

First, we note that the Doppler-velocity interval that we need to monitor is much
narrower than the interval that is actually available with the high sampling rates fs that
we use in the SD receiver. For the 930 MHz radar frequency (0.32 m wavelength), the
benchmark 2 MHz sampling gives unambiguous velocities in the interval ±(fs/2)·(λ/2) =
±160 km s−1. Typically, for near-vertical pointing, it suffices to monitor velocity interval
±5 km s−1. Therefore, for each range gate j, we can downsample (decimate) the to-be-
Fourier-transformed vector w, which according to Eq. (38) is formed from transmission
samples xn, signal samples zn, and an acceleration correction term exp(−iαjn

2),

wn = znxn−je−iαjn2
, (39)

by a factor Mdec, which is 160/5 = 32 for 2 MHz sampling, and 8 for the more typical
0.5 MHz sampling. We do the decimation by forming a new sequence w′

n by adding
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1 2 3

1 2 3

xn

Tc

zn

xn−j

wn = znxn−j

w′
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−iαj<n2>

w
′′

m

Figure 3: Forming the Fourier-transform input vector for a given range gate in the FMF
algorithm. For each of M IPP’s (M=3 in the figure), one first forms the
point-wise product w of the reception z and the shifted, complex-conjugated
transmission x. Next, for each IPP, w is decimated, and the decimated vector
multiplied by an appropriate mean acceleration correction factor to get the
vector w′. Finally, the w′-vectors from the IPPs are concatenated to form the
input vector w′′.

wn’s in blocks of Mdec. At the same time, we make use of the fact that within such
a block, the acceleration factor is almost constant. For each block we use the average
phase φ′ within the block and take exp(−iφ′) out of the decimation sum. This reduces
both the number of multiplications and the number of complex exponentials that need
to be evaluated.

Second, we make use of the fact that most of the elements of w are zeros, in known
locations. When we form w′ from w, we only compute and decimate the products (39)
at the points where we know there can be non-zero data. The transmission duty cycle
in EISCAT experiments is about 10% in the UHF and about 20% at ESR. Therefore,
about 80–90% of the elements of w are zeros, in regularly placed blocks. We now simply
concatenate the non-zero blocks of w′. We get a vector w′′, which typically is two orders of
magnitude shorter than the original FFT input vector w. For example, in the benchmark
case with 600,000 point raw data input vector, using decimation factor 15 as we normally
do, w′′ has the length N ′′ = (1/15) · 0.1 · 600, 000 = 4000. Finally, we Fourier-transform
and normalize w′′ to get the FMF at range gate Rj and Doppler-frequency ω,

FMF(Rj , ω) =
|
∑N ′′−1

n=0 w′′
ne−iωτsn|

‖x‖
. (40)

By restricting ω to the points ωk = 2πk/(N ′′τs), the FMF can be evaluated using FFT.
This is the fast match function algorithm. Due to the much shorter FFT input vector,
even allowing for the extra computations needed in decimation, the FMF is 100–300
times faster than the MF in typical cases. The computation of the FFT input vector w′′

in Eq. (40) is summarized in Fig. 3.
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Figure 4: Failure of coherent integration in standard dual-frequency tau2 measurements.
We plot the maximum value of the FAF (fast oscillating blue curve) and the
AF (slowly oscillating envelope curve, with larger line width) as a function
of the target’s radial velocity. Normalization is such that unity represents
fully coherent integration. The integration time is 300 ms. With increasing
target velocity, both max AF and maxFAF approach the single-channel level.
The single-channel case is shown with the cyan curves at the near-constant
value of about one-half; for that data, the value 0.5 represents fully coherent
integration. The single-channel curves were computed by setting one of the
two frequency channels in the tau2 transmission pattern equal to zero.

2.6 The match function in dual-frequency experiments

The standard EISCAT experiments tau1 and tau2 use two frequency channels. In the
derivation of the MF method, we stated that the approach applies unmodified to all
transmissions. But we also said that for numerical efficiency, we have to apply approx-
imations to the signal model. Our approximation is good only for single-channel data.
For the actual two-channel data the approximation breaks down, the more badly the
larger the target velocity is, and the longer the integration time. The break-down causes
the estimated signal amplitude to fall below the ideal, fully coherently integrated, value.
With our standard 300 ms integration time, for targets with Doppler-velocities larger
than about 2 km s−1, we are only marginally more sensitive than if we were making
use of only a single channel’s data. For example, in Fig. 4 we show the integrated am-
plitude as a function of target velocity for 300 ms integration in the tau2 experiment.
In the figure, we show the maximum value of the noiseless FMF (strongly oscillating
dark curve) and the MF (the dark-coloured envelope curve, with wide line width) as a
function of target radial velocity. Value of unity represents fully coherent integration.
The light-coloured curve, with values little less than 0.5 independent of target velocity,
is the integrated amplitude when one omits one of the two frequency channels from the
coherent integration.
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3 Measuring system

3 Measuring system

3.1 Hardware

The EISCAT UHF radar

So far in our SD measurements we have used the EISCAT UHF radar. The 32 m UHF an-
tenna has a fully steerable parabolic dish, Cassegrain optics, and features rotation rate
of about 80◦/min both in azimuth and elevation. The antenna pointing direction is
calibrated using celestial radio sources, and is believed to be accurate better than 0.1◦

in most directions.5

A block diagram of the UHF radar at the Tromsø site is shown in Fig. 5. The Tromsø
UHF receiver has a cooled preamplifier, giving a system temperature Tsys ≈ 110 K. The
radar’s radio-frequency (RF) band is centered at 928 MHz, and there are 14 transmission
frequencies available, 300 kHz apart. In the most common EISCAT experiment modes,
two frequency channels are used. Recently those have been centered at 929.9 MHz
(EISCAT frequency F13) and 930.2 MHz (F14). The RF signal is mixed in two stages
to the second intermediate frequency (IF2) band, using local oscillators at 812.0 MHz
and 128 MHz, so that F13 maps to 10.1 MHz and F14 to 9.8 MHz. The band is formed
by the radar’s antialiasing filter, which is 6.8 MHz wide and centered at 11.25 MHz.

In the standard EISCAT data processing, the second IF is digitized by a 14-bit analog-
to-digital converter (A/D), which produces a continuous sample stream at the rate of
15 Msamples/s. The stream of IF2 samples is distributed to the multi-channel, VME-
based, EISCAT digital receiver, each channel occupying one slot in a VME crate. Custom
hardware in each channel performs quadrature detection, followed by sampling rate re-
duction appropriate to the typical 10–50 kHz final channel bandwidth. The baseband
sample stream is buffered, and further processing to averaged sample-correlation prod-
ucts is done on UNIX-based computers.

The EISCAT UHF transmitter consists of a programmable radar controller that gen-
erates the pulse patterns at DC level, either uncoded on/off pulses or various classes of
binary phase codes; an exciter system that converts the radar controller output to RF
around 928 MHz; and a klystron power amplifier that consists of two klystron tubes,
in principle capable of delivering a combined peak power of about 2.5 MW. The power
during all our space debris measurements has been considerably lower, at 1 to 1.5 MW.
The maximum transmitter duty cycle is 12.5%, and duty cycles near this value are also
used in most experiments in practice. The time and frequency base at all EISCAT sites
is taken from the GPS system.

The space debris receiver

To be able to use our own data processing, optimized for hard targets, we use a special
digital receiver back-end, the space debris receiver. The signal to the space debris
receiver is branched off from the EISCAT analog signal path at the second IF (IF2)
level. Figure 5 shows the main blocks of the SD receiver, connected to the EISCAT
UHF system at the Tromsø site.

5The UHF antenna has the half power beam width 0.6◦. The official EISCAT pointing program uses
geocentric cartesian coordinates x = 2106.791 km, y = 734.793 km, and z = 5955.183 km for the
antenna, while assuming a reference spheroid with semimajor axis 6378.135 km and semiminor axis
6356.75 km. The corresponding geographic coordinates are latitude 69.586◦N, longitude 19.227◦E,
and altitude 0.086 km.
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Figure 5: The space debris receiver connected to the EISCAT UHF radar. The SD
receiver consists of a measurement computer and an analysis computer. The
measurement computer hosts a custom signal processing board (GURSIP). The
primary analog input to the SD receiver is the EISCAT second intermediate fre-
quency (IF 2) band. The input contains, time-multiplexed, both the standard
received signal and the transmission sample signal (TS). On the processing
board, there is an analog-to-digital converter (A/D) taking 40 megasamples
per second; a direct-digital-synthesizer chip (DDS), which provides clock sig-
nals on the board, phase-locked to the host radar’s 10 MHz frequency reference
signal; two Xilinks signal processing chips (XILINX) to perform signal demodu-
lation and sampling rate reduction; and a memory buffer for temporary storage
of the samples. The recorder program running on the measurement computer
moves the samples over a gigibit network link to an external FireWire disk,
mounted on the analysis computer. Target detection is done by the scanner
program running on the analysis computer, using the FMF-algorithm. After
detection, two other software modules, the archiver and the analyser, store
away the event’s raw data, and estimate and save the target parameters.
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3 Measuring system

The EISCAT standard data processing handles a multi-frequency transmission by
feeding the IF2 data to multiple hardware channels, each tuned to a particular center
frequency. Our approach in the SD receiver is different. We sample the analog IF2 band
fast enough to capture the relevant frequency channels into a single digital stream. This
type of data is called multichannel complex data in [6]. According to the bandpass sam-
pling theorem, we need to take B million complex samples per second, in the minimum,
if the spread of frequencies is B MHz. For our most often used measuring mode, where
there are two frequency channels 300 kHz apart, we have normally used 500 kHz sam-
pling rate. But we have also verified that the SD receiver can handle sampling speeds
up to 2.5 Msamples per second.

In addition to the standard reception, our data processing requires that the transmis-
sion waveform is measured. As indicated in Fig. 5, EISCAT provides the transmission
sample signal (TS) time-multiplexed into the same data path as the reception. The
multiplexer switch is controlled by the receiver protector bit (“TX bit”), generated by
the EISCAT radar controller microprocessor. We routinely record the receiver protector
bit into our data stream to mark out the transmission blocks. The bit is stored into the
least significant bit of the imaginary part of the 16 + 16-bit complex integer data words.
With this arrangement, the transmission signal gets sampled with the same rate as the
actual reception (though we would actually like to sample it with a higher rate).

The core of the data acquisition system is a custom PCI-board which performs sam-
pling, quadrature detection and sampling rate reduction. The board was developed
originally for ionospheric tomography by the now defunct Finnish company Invers Ltd.

The A/D converter on the PCI board samples at 40 MHz. The resulting real-valued
sample stream is processed by programmable logic chips, from the Xilinks SpartanXL
family, to perform quadrature detection, essentially by doing Hilbert transform. The
result of the transform is a complex-valued sample stream at 10 MHz rate, representing
the negative frequency part of the spectral contents of the analog input. The chip then
decimates the 10 MHz stream to the final sampling rate. Typical decimation factor M is
20, which yields 500 kHz final sampling rate. The decimation is done by adding samples
in blocks of M; this ensures proper filtering.

It may be noted that there is no separate multiplication to baseband in this scheme.
Instead, the customary frequency component at baseband is created by the undersam-
pling. With the 40 MHz primary sampling rate, the arrangement requires that the
band-limited analog input is centered at 10 MHz. Although it is possible to run the
A/D converter on the board at other sampling rates, the 40 MHz is a most convenient
choice. That the two frequencies EISCAT nowadays most often use in the standard
measurements, are 10.1 MHz and 9.8 MHz, is a lucky coincidence. The next version of
the SD receiver should have a complex mixer built-in.

The PCI board is mounted in a Macintosh G4 workstation, running under the Mac OS
X version of UNIX. We call the Mac G4 the measurement computer. In addition, there
is a dual-CPU Mac G5 computer for data analysis. The Mac workstations are connected
to each other via a gigabit Ethernet link, and are also connected to the site LAN. The
measurement computer runs software from Invers Ltd to read the sample data from an
onboard buffer and write them to a hard disk, either a local disk, or a disk mounted over
the gigabit link from the analysis computer. The data accumulation rate to the disk
is between 7 and 30 GBytes per hour (2 to 8 MBytes s−1), depending on the sampling
rate. The maximum sustainable transfer rate over the data link in this configuration
is more than 20 MBytes s−1, so even 8 MBytes s−1 is only a minor load, and does not
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Figure 6: Main modules of the real-time SD data processing software.

affect significantly the computing performance of either of the workstations. The LAN
connection is used to access the EISCAT process computer, to update the time base in
the G4 and G5 once every 5 minutes, using the standard network time protocol (ntp).
This ensures that the time base in the Macs stays within 20 ms of the time kept in the
EISCAT system. This is more than adequate for time-stamping space debris events.

3.2 Software

An overview of the real-time SD data processing software system is shown in Fig. 6.
The system consists of four main processing units and an overall control system. The
processing has the following phases.

Sampling and demodulation. The SD receiver’s programmable firmware delivers complex-
valued baseband samples at a strictly regular rate to a buffer, which is visible in
the measurement computer’s memory space. The buffer is large enough to smooth
out the less predictable access times of the reading process—which is an ordinary
time-sharing UNIX process—so that no samples are lost.

Recording. The recorder program gump, provided by Invers, reads the data from the
buffer and dumps them to disk files. The sample data are organized into directories
which we call the stream directories, or just the streams. Typically, a stream con-
tains 60 minutes of uninterrupted sample flow in time-stamped files, each storing
one million complex points as 2 + 2 byte integers.

Scanning. The streams are processed, one stream at a time, by the SD scanner program
dscan. Two scanners can be running in parallel in the dual-processor analysis
computer. The scanner reads a segment of raw data from a stream and searches
through the segment for hard targets, range gate by range gate, performing thresh-
old detection using the FMF algorithm. When a pre-determined threshold is ex-
ceeded, we say that we have a hit. The scanner saves the hit’s description to a
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3 Measuring system

file and proceeds to the next data segment. Scanning is the most time-consuming
step in the data processing. Therefore, dscan is implemented as a C program that
makes use of the AltiVec vector processor onboard the G5, by calling routines in
Apple’s DSP library (vdsp). The scanner performance depends strongly on the
length of the input data vector. For the most common configuration (2 µs sam-
pling interval and 0.3 s coherent integration), we get about 2 GFlops mean speed
per processor (see Table 1).

Event archiving. The next module in the processing chain, the event archiver darc,
inspects the stream’s list of hits, and combines to an event the hits that correspond
to a single target passing through the radar beam. Having determined the time
boundaries of the event, the archiver copies the event’s data to a separate event
directory. The event archiver is a C program, but it is not performance critical.
Most of its time goes to data copying, so its speed is mainly limited by disk speed.
We have saved all raw data from most of the test measurements so far—somewhat
less than a terabyte—but in routine measurements, at most the raw data of events
will be saved. With the event rates observed in the test measurements, saving all
events from the more than 400 hours of measurements that we anticipate to be
able to do annually, would require (only) on the order of a terabyte of storage per
year.

Parameter estimation. As the last step, the analyser program danalyser picks events
from the event directories and deduces and saves the event parameters. The
method to compute the target parameters is still under development. What the
analyser does now, is basically to call dscan to re-scan the data using FMF, but
with maximum time and range resolution, over a narrow range interval, and to
make linear or quadratic fits to the range and Doppler-velocity time series. The
range and velocity parameters that we normally quote are taken from these fits, for
the time instant of maximum signal strength. The analyser is a Matlab program.

The combined processing speed is such that for data taken with 2 MHz sampling rate,
with 0.3 s coherent integration it takes 40–45 minutes to scan, archive and analyse one
hour of raw data, while simultaneously accumulating new data. We need to make use
of both CPU’s in the analysis computer in this case. For the more typical 500 kHz
sampling rate, we need only about 20 minutes to handle an hour, and then we need to
use only a single dscan. The software system’s performance under the benchmark load
is summarized in Fig. 7.

An example of dscan performance during real operation is shown in Table 1. The
table shows the performance info printed out by dsan after it has processed a stream.
The measurement was done during a test campaign in March 2004. The EISCAT ex-
periment was tau1 and the SD receiver was sampling with 2000 ns sampling interval.
The two scanners had no problem in keeping up with real-time. Each scanner processed
0.3 seconds of data and then skipped 0.2 seconds; a period of 192 ms was required to
handle one second of input data. Clearly, even a single scanner would have been enough
for real-time speed, and there is no need for any skipping of data either.

Internal timing of the FMF evaluation subroutine fastgmf, invoked from dscan, is
shown in Table 2. The lines 18 to 21 of the table give the time spent per range gate in
the main steps of the FMF (Fig. 3). The test was done on a 1 GHz G4 Mac; a 2 GHz G5
Mac is almost twice as fast. Table 2 shows that for short, cache-friendly data vectors,
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Figure 7: Software performance under benchmark load. The figure shows the time re-
quired by the scanner, archiver, and analyzer, running on the G5 analysis
computer, to handle 60 minutes of data, composed of two 30 minute data sets
on a disk. During the test, new data was being transferred with the bench-
mark rate of 27 GBytes h−1 from the measurement computer to the analysis
computer. The two sets were processes in parallel by the two processors of
the G5 workstation, and both required about 35.5 + 3 + 6 = 45 minutes to
complete.

Table 1: dscan speed when scanning tau1 2 µs data with the FMF. Both the recorder
gump and two dscan scanners were active simultaneously. The recorder wrote
samples at the rate of 2× 106 Bytes s−1 over the network to the same FireWire
disk on the analysis computer from which the two scanners read it. The com-
bined processing speed was about 4000 MFlops.

scanner 1
7318 scans - - 1400.0 sec -- 98 hits
Time per scan : 191 ms
Read per scan : 41.6 ms 0.60 MBytes 14.3 MBytes/s
Time per gate : 0.260 ms
FMF per gate : 0.199 ms 0.398 MOp 2000 MFlops

scanner 2
7318 scans - - 1405.2 sec -- 135 hits
Time per scan : 192 ms
Read per scan : 41.5 ms 0.60 MBytes 14.3 MBytes/s
Time per gate : 0.261 ms
FMF per gate : 0.200 ms 0.398 MOp 1993 MFlops
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3 Measuring system

Table 2: Performance of dscan when scanning tau2 data (taken with 2 µs sampling
interval) using the FMF, with 312 ms coherent integration. This test was done
on a 1 GHz G4 Mac. The FFT speed is 5600 MFlops, delivered by the AltiVec-
boosted library routine on 4 kword input vector. The complex multiplication
proceeds only with the speed of 550 MFlops. In spite of the fast FFT, the
overall FMF processing speed is only 1050 MFlops. To handle 686 range gates,
giving range coverage 345–1575 km (a gap excluded), took 323 ms, which is a
trifle longer than the 312 ms long input data segment.

1 Scan parameters
2 sampling 2000 ns
3 integration 156240 (312.480 ms)
4 n to read 158988
5 n ipps 56 (28 cycl)
6 n per tx 288
7 n shifts 686
8 FMF parameters
9 n fftin 4032

10 fft length 4096 (2^12)
11 Scanner timing
12 Time/scan 323 ms
13 Time/gate 0.470 ms
14 FMF/gate 0.403 ms 0.424 MOp 1053 MFlops
15 FMF internal timing per range gate
16 Operation N Op us MFlops
17 --------------------------------------------------
18 x(t)*y(t) 56*288 96768 176 550
19 Sum xy_n 56*288 32256 127 250
20 X(t)*e^(iat_0 ^2) 56*72 24416(a) 74 330
21 FFT 4096 270486 48 5600
22 Total 423926 425(b) 1000
23 --
24 a) 56*4 + 4032*6
25 b) Measured FMF/gate was 488 us.

the library FFT, which uses the vector processor, is quite fast: the 4096 point FFT
that we normally use gives about 5000 MFlops per processor. In fact, most of the FMF
processing time is spent elsewhere than in the FFT. For the long data vectors used in
the MF, processing speed is limited by the (now much slower) FFT speed. For instance,
a 220 point FFT proceeds with only 410 MFlops. We use the vectorized library also for
complex multiplication (line 18 in the table), but there the speed is disappointingly low.

The four main processing blocks run as independent, stand-alone UNIX timesharing
processes, which do their specific job once and then die. The processes themselves do
not know anything about each other. The processing chain is created and organized by
software that we call dros. The name is a modified version of eros, and is meant to
indicate that the dros system is a slightly tailored copy of the standard EISCAT real-
time radar operating system of that name. Based on an experiment-specific configuration
file and a given start time, the dros system generates the required input files and
command line parameters for the processing modules, starts and restarts the processes
in the two computers as required, and maintains and logs state information. The dros
system can query the running eros at the host radar to find the antenna pointing
direction and transmission power information.
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4 Measurements

In this section we show examples of the results of the measuring campaigns. To incor-
porate recent updates in the analysis procedure, we re-analysed all the data sets, both
using the FMF and the MF algorithm. We did not re-scan the raw data, but the starting
point was the set of events found in the original detection scans. A consequence is that
the range coverage of the data vary, for we realised only late that it is useful to monitor
higher than LEO regions even when the primary interest is in LEO.

In the measurement campaigns, all conducted at the EISCAT UHF radar in Tromsø,
two EISCAT experiment were used, the tau1 and tau2 experiments. We conducted two
test measurement campaigns as stipulated in our work contract, the first in October
2003, the second in March 2004. In addition, we took part to the beam park 2004
multi-radar SD measurement campaign, by a 16 hour run in September 2004. Finally,
we measured four days during a standard EISCAT CP1 experiment in November 2004.
The data sets are the following.

1. oct03-tau1-2000 : 10.6 hours, 232 events, of tau1 data, recorded in three intervals
in October 13, 14 and 16, 2003, using 2000 ns sampling interval in the SD receiver.

2. mar04-tau1-2000 : 13.9 hours, 286 events, of tau1 data, recorded between 11:30
UT, March 4 and 01:00 UT, March 5, 2004, using 2000 ns sampling interval.

3. mar04-tau2-2000 : 10.9 hours, 146 events, of tau2 data, recorded 01:00–11:00 UT,
March 5, and 14:50-16:00 UT, March 10, 2004, using 2000 ns sampling interval.

4. mar04-tau2-500 : 5.4 hours, 102 events, of tau2 data, recorded 08:30–14:00, March
10, 2004, using 500 ns sampling interval.

5. sep04-tau1-2000 : 16.6 hours , 368 events, of tau1 data, recorded from 15:49 UT,
September 7, to 08:29 UT, September 8, 2004, using 2000 ns sampling interval.

6. nov04-tau2-2000 : 100 hours, 1518 events, of tau2 data, recorded from 09:02 UT,
November 09, to 14:00 UT, November 13, 2004 using 2000 ns sampling interval,
during a standard EISCAT ionospheric experiment.

For the sep04-tau1-2000 data, the Tromsø UHF antenna was pointed to azimuth 133.3◦,
elevation 61.6◦; for all other data sets, the antenna was pointed along the magnetic field
direction, azimuth 184.0◦, elevation 77.1◦.

Figure 8 shows the target detection rate as a function of altitude for two data sets, in
50 km bins. We indicate by cross-hatching the altitude regions where targets were not
looked for. Bins adjacent to those regions have artificially low detection rates. In the
tau1 data set, the well-known generic features of the LEO SD data are reproduced, with
a maximum around 900 km altitude and another maximum developing, but not fully
visible, towards 1500 km altitude. The tau2 data set has a maximum at 1000 km, but
there is a data gap at precisely those bins where the tau1 data have their maximum.
Nevertheless, the peak event rate is about 2.5 events/hour/bin in both cases.

Figure 9 shows the effective diameter as function of altitude and gives the relative
frequency of the diameters. The detection sensitivity is about 2 cm at the 1000 km
range. As a curiosity, we note a small discontinuity in all the panels of Fig. 9 at about
6 cm diameter. This feature is most probably an artifact due to our definition of the
effective diameter. Our definition ignores the resonance region in the scattering and
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Figure 8: Event rate versus altitude. The data sets are sep04-tau1-2000 (368 events)
and nov04-tau2-2000 (1518 events).

accordingly, we change the formula that converts from the radar cross section to the
effective diameter, abruptly at 5.9 cm.

Figure 10 shows the Doppler-velocity vD in the nov04-tau2-2000 data set, analysed
both with the FMF (top panel) and the 100 times slower MF (the middle panel). Not
much can be gained by using the MF in the analysis. In the bottom panel we show
the radial velocity vRR, fitted from the R(t) time series data. The vRR data is intented
for sanity check only; the vD data should normally be used for the radial velocity. The
analyser does not attempt to determine vRR if there are too few good points R(tn)
available. The vRR is nominally computed in 85–90% of the events, but many fits are
quite bad, and it is not surprising that the vRR data show more scatter and less structure
than the vD data. For instance, the splitting of the “towards” (vr < 0) and “away” data
into two closely separated stripes, very visible in the vD data in the middle panel of
Fig. 10, is barely observable in the corresponding vRR data in the bottom panel of
Fig. 10.

Figure 11 shows radial acceleration, computed by linear fit to the velocity time series
vD(t), when enough data points are available. As we have indicated in the figure, this
happened only in about two thirds of the events. We have also plotted the acceleration
value that was used in the detection scans. The acceleration value is represented by
the upper edge of the shaded arc and corresponds to circular-orbit and strictly vertical
pointing. The lower edge of the arc is computed assuming that the antenna is pointed
towards south, at the elevation that was actually used, and that the target is moving in
circular polar orbit across the beam. The shaded region should therefore be representa-
tive of the possible values of radial acceleration of targets in circular orbits. However,
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Figure 9: Effective diameter. The data sets are sep04-tau1-2000 (top two panels) and
nov-tau2-2000 (bottom two panels).
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Figure 10: Radial velocity in nov04-tau2-2000 data, analysed in various ways. The plot-
ted value is vD in the top two panels, and vRR in the bottom panel. The top
panel data are analysed using FMF, the other two panels are analysed using
MF.
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Figure 11: Radial acceleration aD.

much of the scatter in the data points is more likely due to bad fits than the targets
actually being in non-circular orbits.
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