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Following a feasibility study in 2000-2001 about using EISCAT radars to
detect centimetre-sized space debris in the frame of an ESA contract, the
present study was aimed at doing the debris detection and parameter esti-
mation in real-time. A requirement in our work is to “piggy-back” space
debris measurements on top of EISCAT’s normal ionospheric work, without
interfering with those measurements, and to be able to handle on the order
of 500 hours of measurements per year. We use a special digital receiver
in parallel to EISCAT’s standard receiver. We sample fast enough to cor-
rectly band-pass sample the EISCAT analog frequency band. To increase
detection sensitivity, we use amplitude domain integration—coherent pulse-
to-pulse integration—of the samples. The coherent integration is built into
our method of target parameter estimation, which we call the MF method,
for “match function” or “matched filtering”. The method is derived from
Bayesian statistical inversion, but reduces, with common assumptions about
noise and priors, to minimizing the least squares norm ||z(t) —b x (R, v, a; t)||,
where z is the measured signal and b x(t¢) is the model signal. Because the
model signal depends linearly on the amplitude b, it is sufficient to maximize
the magnitude of the inner product (cross correlation) between z and y, the
amplitude estimate is then determined by direct computation. The magni-
tude of the inner product, when properly normalized, is the MF. Our original
Matlab implementation of the MF method during the precursor study was
about four orders of magnitude too slow for real-time applications. In this
study, we have gained the required speed factors. A factor of ten comes from
using faster computers, another factor of ten comes from coding our key al-
gorithms in plain C instead of Matlab. The largest factor, typically 100-300,
comes from using a special, approximative, but in practice quite sufficient,
method of finding the MF maximum. Test measurements show that we get
real-time speed already when using a single 2 GHz dual-processor G5 Mac-
intosh to do the detection computations. The measurement campaigns also
show that the achieved sensitivity at EISCAT UHF radar, with a wavelength
of 32 cm, corresponds to detecting a 2.2 cm diameter target at the range of
1000 km. We register typically 15-25 targets per hour in the 500-1500 km
altitude band. A final 101 h debris measurement campaign, conducted in
parallel with a standard EISCAT ionospheric experiment, confirmed that we
can now essentially in real-time handle longish measurements. There remain
partially open issues, like the efficiency of the coherent integration on the
theory side; the need for more robust and automated execution of the ex-
periments in the software side; and the need of ensuring the availability of
eventual replacement of our special hardware. Nevertheless, at the end of
2004, we are technically in the position to start routine space debris mea-
surements with the EISCAT system.
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1. Introduction

1.1. Background and overview

It is estimated that there are approximately 200,000 objects larger than 1 cm currently
orbiting the Earth, as an enduring heritage of four decades of space activity. This
includes the functioning satellites, but by far most of the objects are what is called
space debris (SD), man-made orbital objects which no longer serve any useful purpose.
Many of the small-sized (less than 10 cm) particles are due to explosions of spacecraft
and rocket upper stages, but there are also exhaust particles from solid rocket motors,
leaked cooling agents, and particles put into space intentionally for research purposes.
The large (> 10 cm) objects have known orbits and are routinely monitored by the US
Space Surveillance Network, but information of the smaller particles is fragmentary and
mainly statistical. Especially, in Europe there is no radar that is routinely used for
monitoring small-size SD.

In 2000-2001, we, together with our colleagues from Sodankyla Geophysical Observa-
tory, undertook a study for ESA about the feasibility of using the EISCAT ionospheric
research radars for space debris measurements [3]. Since the early 1980’s, the EISCAT
mainland radars—the Tromsg UHF radar operating at 930 MHz and the VHF radar
operating at 225 MHz—have been performing ionospheric measurements to the order of
2000 hours per year; and since the late 1990’s, after the EISCAT Svalbard radar became
operational, EISCAT has been measuring more than 3000 hours annually. The interest
is to use a substantial amount of these operating hours for simultaneous space debris
measurement in cost-effective way. In the initial study, we showed that it is feasible,
and technically straightforward, to perform SD measurements in parallel with normal
EISCAT ionospheric measurements, without interfering with those measurements [10].

Our measuring approach is to operate a separate digital receiver back-end, which we
call the SD receiver, in parallel with EISCAT standard digital receiver. This allows us
to implement our own, amplitude domain data processing, which we call the the match
function or matched-filtering (MF) method. The MF method makes use of the long
coherence time of a signal reflected from a small target to increase detection sensitivity,
via pulse-to-pulse coherent integration. To make the hardware as simple and cheap
as possible, the custom-made part of the SD receiver is basically just a fast sampler
and digital demodulator; the MF computations are done in fast but still cheap general
purpose workstations. The SD receiver samples the EISCAT analog signal, at the second
intermediate frequency (10 MHz) level, fast enough to capture the relevant frequency
channels into a single digital stream, without doing the customary channel separation.
Typically during a measurement, we sample at the rate of about a million complex
samples per second continuously, producing more than 10 GBytes of data per hour.
Early on, ESA suggested that we should strive to do the data analysis in real-time so
that the raw data could be quickly disregarded.

A straightforward implementation of the MF method implies long data vectors, with
lengths of hundreds of thousands complex points, to be Fourier-transformed a few thou-
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1. Introduction

sand times, per every second of raw data; basically, one is computing power spectra for
a relatively large number of range gates. At the Space Debris III conference in 2001,
we had to concede that with the processing speed that we had achieved at the time, it
would take several centuries of CPU time to analyze just one year’s quota of EISCAT
space debris measurements. However, soon afterwards, M Lehtinen of Sodankylda Geo-
physical Observatory, who was the project leader of the precursor study, realized that
by accepting some loss of detection sensitivity and a small bias in the velocity estimate,
it would be possible to speed up MF computation drastically, typically by more than
two orders of magnitude. We use the term fast match function algorithm (FMF) for the
resulting computation scheme.

The results of the initial study were encouraging. The achieved detection sensitivity
was equivalent to being able to observe spherical targets with diameters of about 2 cm
from 1000 km range. With the advent of the FMF-algorithm, the processing speed,
though still sluggish, was starting to become useful. In 2003, ESA commenced the
present study, to bring the analysis of large amounts of EISCAT SD data up to real-
time speed [9]. The study has achieved the necessary processing speed. In addition to
the factor of 100 delivered by the FMF-algorithm, we now use computers that are about
ten times faster than what we had available in 2001. A final required factor of ten to
the speed was obtained by coding the MF- and FMF-algorithms in C, instead of using
Matlab as was done in the initial study.

The EISCAT system [1, 2, 3] consists of three separate radars: monostatic VHF radar,
located near Tromsg, Norway, and operating at 224 MHz; monostatic but two-antenna
EISCAT Svalbard Radar in Longyerbyen, Svalbard, operating at 500 MHz; and tristatic
EISCAT UHF radar at 930 MHz, with transmitter in Tromsg and receivers in Tromsg
and in Kiruna, Sweden, and Sodankyld, Finland. All the transmitters operate in the
megawatt peak power range and routinely utilize high (10-20%) duty cycles.

Even though routinely picking-up hard target echoes, standard EISCAT data process-
ing is not optimized for hard targets. The characteristic feature expected from small
hard targets is long signal coherence time, several hundred milliseconds. By a signal’s
(phase-) coherence we mean that the signal phase ¢y (t) obeys a deterministic functional
form for some duration of time, called the coherence time.

EISCAT’s normal ionospheric signal has coherence time less than a millisecond in
most parts of the ionosphere. This time is much shorter than the interval between
transmitted pulses, the interpulse period IPP, which in EISCAT typically is 3—10 ms.
Therefore, echoes from individual pulses are uncorrelated, and can only be added up in
the power domain. This is done by computing, for each of the received pulses separately,
signal autocorrelation functions, or, equivalently, power spectra, for a set of range gates,
and then adding these power-domain quantities. This is called non-coherent pulse-to-
pulse integration. We emphasize here, and will discuss in more length in section 3.6,
that within a single transmission-reception (T/R) cycle, computing range-gated power
spectra achieves coherent integration of the samples. In fact, for a single uncoded pulse,
the MF method, too, in effect just computes range-gated power spectra.

To achieve coherent integration from pulse to pulse, the MF method adds the echoes
from different T/R cycles in amplitude domain, taking care that the pulses are added
with equal phase. The method, in essence, removes all phase variation from the signal
before adding the samples. This is achieved by guessing the phase factor ¢ ®) of the
signal, and canceling it by multiplying the signal by the complex conjugate of the guess,
e~™0()  The guesses in our implementation are generated by brute force. We search
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1.1. Background and overview

through a large set of parametrized model functions, and use the one which achieves best
cancellation of the phase, that is, which results in largest integrated amplitude. After the
phase variation has successfully been removed, the remaining part of the signal can be
safely integrated, both within a single pulse, as well as from pulse to pulse. Incidentally,
dividing the radar data into T/R cycles is artificial from the MF method point of view.
It is more natural to consider the totality of transmission during an integration period
as just a waveform pattern, to be matched against the totality of reception, irrespective
of how these two are interleaved. In particular, there is no need for the T/R cycles to
be identical, either in terms of length or transmission content.

As long as the signal stays coherent (obeys the assumed model), coherent integra-
tion suppresses the non-coherent background noise, so that the effective signal-power to
noise-power ratio increases directly proportionally to the number of pulses integrated.
This increases detection sensitivity. Non-coherent integration, instead, does not increase
signal-to-noise ratio. The drawback in coherent integration, in addition of it being com-
putationally more demanding due to the long data vectors, is that if the signal model
is not accurate, the ensuing phase error will quickly eat into the integrated signal am-
plitude, rendering longer integration useless.! In our case, coherent integration beyond
about 300 ms does not seem to improve detection sensitivity significantly.

Part of the reason for the unexpectedly short apparent coherence time is that, although
we (see section 3.3) will derive a signal model that we believe should be fairly accurate
for small structureless targets, for performance reasons we cannot actually use the ideal
model. The approximative model that we do use, both in the MF and FMF algorithms,
is suitable for narrow-band (single-frequency-channel) transmissions. The different fre-
quency channels in a multi-frequency signal will have slightly different Doppler-shifts
because the Doppler-shift depends on transmission frequency. It is impossible to can-
cel the Doppler phase factors simultaneously using only the single model phase factor
which is available in the approximative model. We elaborate on some of these aspects
in sections 3.6 and 3.8 of this report, but a detailed study of the coherent integration
efficiency will be postponed to later study.

We derive formally (see section 3.1) the MF method via Bayesian statistical inversion.
Within the Bayesian approach, the estimates for the basic parameters range, radial ve-
locity, radical acceleration and signal amplitude, or signal total energy, are found as the
most probable values, given the measured noisy signal. With our assumptions, this solu-
tion is also the one that minimizes the least squares norm between the measured signal
and the set of model functions; the solution is also the maximum likelihood solution.

We have, during four measurement campaigns during the two years of this study,
collected and analysed about 150 hours of data, all at the EISCAT UHF radar in Tromsg.
These data have been taken mostly for method development and verification purposes;
assessing any possible physical significance of the about 2500 events that we have got is
outside the scope of this work. Nevertheless, we show, with minimal commentary, the
bulk analysis results in chapter 6 of this report. There we plot the observed detection
rate as function of altitude in six data sets (the peak detection rate is about 2.5 events
per hour per 50 km bin near 1000 km altitude); show the effective diameter of the targets
as a function of range (we observe events down to effective diameter of about 21-22 mm
at 1000 km range); and plot the detection rate as function of target’s radar cross section

! We admit that there may be a grain of truth in the statement in a recent book which claims that
“most radars utilize non-coherent integration”, because “maintaining coherency [...] is very costly
and challenging to achieve.” [7]
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1. Introduction

(RCS). We must emphasize here, however, that all our results concerning target size are,
at best, “lower bounds”. We cannot say much about the actual target cross sections,
let alone target physical diameters. Perhaps the single major deficiency in EISCAT,
in comparison with some other radars used for space debris observations, is that the
EISCAT antennas do not have monopulse feed. At the moment at least, there is no way
available that would allow pinpointing the actual direction of a target within the radar
beam, and so the target’s radar cross section cannot be deduced from the measured signal
strength. We hope that in the future we can partly alleviate this problem by collecting
fairly large amounts of data—perhaps about 500 hours per year—so that the antenna
beam pattern can be taken into account statistically, and meaningful comparisons to
space debris models made. Finally, we also plot target velocity and acceleration as
function of altitude.

1.2. Study objectives

According to our contract agreement with ESA/ESOC [9], the objective of this study
was

“To develop methods to perform real-time detection of small-sized debris objects in LEO
during routine EISCAT operations. The new methods shall be based on the capabilities
(soft- and hardware, as well as data processing procedures) for debris detection that
have been developed in the precursor study. The routine real-time detection shall be
demonstrated during standard EISCAT experiment campaigns.”

1.3. Structure of the study and organization of this report

The basic strategy in the study was to proceed in small, verifiable steps from the “proof-
of-concept” phase achieved in the precursor study to the practical execution of SD mea-
surements in real-time. For this purpose, the contract stipulated the following three
work packages

1. Updating of the data processing methods and algorithms.

2. Real-time detection and parameter estimation of space debris echoes in raw data
acquired during the precursor study.

3. Real-time detection during routine operations of one selected EISCAT radar facil-
ity.

In work package 1, we implemented in C language the match function (MF) and
the fast match function (FMF) algorithms that we had developed in Matlab during
the precursor study. We used recorded raw data from the precursor study to verify
that the C implementations gave (essentially) the same parameter values and the same
detection sensitivity as the Matlab implementation. Both the MF and FMF algorithms
were embedded as subroutines inside a new, C language “main program”, the debris
scanner DSCAN. The built-in timers of DSCAN were used to evaluate the performance
of the newly implemented algorithms, in that time, in a new 1 GHz dual-processor
G4 Macintoch (which later became our data collection computer). It was evident after
the very first speed measurements that real-time speed was within grips more easily
than we had anticipated. For the rest of the study, the emphasis could be shifted from
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1.3. Structure of the study and organization of this report

raw performance improvements to advancing the understanding of the measurements,
and building the software and hardware infrastructure necessary in actually carrying out
long measurement campaigns.

In work package 2, we did our first test measurement, in October 2003 at the Tromsg
UHF radar. At the time, we had only the data collection computer available. We
recorded the raw data to disk. We also did a short preliminary test of running the
DSCAN in the data collection computer simultaneously with ongoing data collection, and
were encouraged by the smooth performance. After the campaign, we used the recorded
data, and the raw data of the precursor study, to measure the scanner performance, and
to develop data analysis of the detected events in the new environment.

In work package 3, we conducted a 24 hour test measurement campaign in Tromsg,
in March 2004. For this campaign, we had our hardware updated to a “baseline final”
configuration, where we had, in addition of the data collection computer, a fast new
workstation for target detection and parameter estimation, and a fast network connection
between the two computers. We demonstrated that it was possible to do all the phases of
the data processing at real-time speed, with little manual intervention. But even though
we did produce event parameters automatically, in order to demonstrate the speed, it was
clear that fully automatic operation was not meaningful, due to the problems of removing
bad data before doing parameter estimation. The benefits of some manual data cleaning
have come even more evident during a 16 hour beam park 2004 measurement which we
performed in September 2004, and a 100 hour measurement that we did in November
2004. Even though neither of these two campaigns does strictly fall inside the contract
limits, we did use the opportunity to further develop our data processing and experiment
execution method in real measurements; we include the analysis results from those data
sets into this report.

In our contract, there was a fourth work package, titled “Investigation of the Pos-
sibilities of Orbital Parameter Determination with the EISCAT radars.” Our purpose
had been to evaluate what use we could make of the tristatic UHF radar system in this
context. To that end, during the March 2004 campaign, we recorded raw sample data
also in the Kiruna and Sodankyla sites, using the standard EISCAT receivers. However,
unanticipated but necessary work to clarify several weak points in our measurement the-
ory, which had become irritant during summer 2004 when we did reassess the theory for
a COSPAR 35 talk, caused us to start falling seriously behind the contract schedule in
the autumn 2004. In the late autumn, it was agreed to exclude the work package four
from the present work.?

Even though the incremental work package structure, the packages 1-3, turned out
to be both convenient and useful in the course of the work, in this report we are not
going to trace the gradual development. Instead, we structure the report to describe the
current state of our measuring theory; our hardware; and our software. We start, after
this introductory chapter, with the hardware, by describing the space debris receiver
and its host radar environment, the EISCAT Tromsg UHF radar in chapter 2.

In chapter 3 and appendix A we give a fairly detailed presentation of our measurement
and data processing theory, the match function method. In addition of deriving the ideal,
exact method in sections 3.1 and 3.3, we derive in section 3.4 the approximative algo-
rithms which we actually use in the numerical work. We discuss the connection between
the common range-gated power-spectrum method of detection and our MF method in

2 See section 4 of the minutes of progress meeting 5, held in Kiruna, October 28th, 2004.
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1. Introduction

section 3.6. We deal in this report with several matters that have been omitted in
our earlier reports. These include the effect of digital filtering to the signal energy es-
timate (section 3.2 and appendix A), and the question of background subtraction in
section 3.5. We describe, for the first time, the crucial FMF algorithm, and discuss some
of its properties in section 3.7. We consider the consequences for coherent integration of
dual-frequency transmission in section 3.8.

In chapter 4, and two appendixes, we describe the software. We first give an overview
in section 4.1, including an overview of the real-time performance. Then we describe the
time-critical program module, the scanner DSCAN, as well as its control environment, in
section 4.2 and appendix B. In section 4.3 we describe the event archiver program DARC,
and discuss the necessity of interactively cleaning the hitlist files produced by the scanner.
In section 4.4 we provide a top-level flowchart of the parameter estimation Matlab script
DANALYSIS. Section 4.5 mentions our present ideas and initial implementation for an
overall debris measurement real-time control software DROS, using a modified version of
the standard EISCAT real-time control software, the so called EROS system. Section 4.6
shows results of DSCAN performance measurements, including internal timing of the GMF
and FASTGFM subroutines that implement the MF and FMF algorithms.

In chapter 5 we describe our space debris measurements. We describe in section 5.1
the EISCAT experiments that we have been using in the campaigns, list our data sets
in section 5.2, and then show some fifteen pages of summary plots of the analysed data
in sections 5.3 through 5.5.
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2. Hardware

2.1. EISCAT UHF radar

So far in our SD measurements we have used mainly the EISCAT UHF radar. The
32 m UHF antenna has a fully steerable parabolic dish, has Cassegrain optics, and has
rotation rate of about 80°/min both in azimuth and elevation. The antenna pointing
direction is calibrated using celestial radio sources, and is believed to be accurate better
than 0.1° in most directions.

A block diagram of the UHF radar’s Tromsg site is shown in Fig. 2.1. The EISCAT
receivers at all three UHF sites, Tromsg, Kiruna, and Sodankylé, are almost identical,
the main difference being that at the receiving-only sites Kiruna and Sodankyla there is
no need for the duplexer and the receiver protector. Also the polarizer arrangements are
somewhat different. The Tromsg UHF receiver has a cooled preamplifier, giving a system
temperature Ty ~ 110 K. Kiruna and Sodankyla have recently moved over to uncooled,
HEMT-based (high electron mobility transistor) preamplifiers, with system temperatures
around 50 K. The radar’s radio-frequency (RF) band is centered at 928 MHz, and there
are 14 transmission frequencies available, 300 kHz apart. In the most common EISCAT
experiment modes, two frequency channels are used. Recently those have been centered
at 929.9 MHz (EISCAT frequency F13) and 930.2 MHz (F14). The RF signal is mixed
in two stages to the second intermediate frequency (IF2) band, using local oscillators
at 812.0 MHz and 128 MHz, so that F13 maps to 10.1 MHz and F14 to 9.8 MHz. The
band is formed by the radar’s antialiasing filter, which is 6.8 MHz wide and centered at
11.25 MHz (see Fig. 3.2 on p. 27).

In the standard EISCAT data processing, the second IF is digitized by a 14-bit analog-
to-digital converter (A/D), which produces a continuous sample stream at the rate of
15 Msamples/s. The stream of IF2 samples is distributed to multi-channel, VME-based,
EISCAT digital receiver, each channel occupying one slot in a VME crate. Custom hard-
ware in each channel performs quadrature detection, followed by sampling rate reduction
appropriate to the typical 10-50 kHz final channel bandwidth. The baseband sample
stream is buffered, and further processing to averaged sample correlation products is
done on UNIX-based computers (EISCAT uses computers based on SPARC-processors,
and the Solaris flavour of UNIX).

The EISCAT UHF transmitter consists of a programmable radar controller that gen-
erates the pulse patterns at DC level, either uncoded on/off pulses or various classes of
binary phase codes; an exciter system that converts the radar controller output to RF
around 928 MHz; and a klystron power amplifier that consists of two klystron tubes, in
principle able to deliver combined peak power of about 2.5 MW. The power during all
our space debris measurements has been considerably lower, at 1-1.5 MW. The maxi-
mum transmitter duty cycle is 12.5%, and duty cycles near this value are also used in
most experiments in practice. The time and frequency base at all EISCATsites is from
the GPS system.
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2. Hardware

2.2. The space debris receiver

To be able to use our own data processing, optimized for hard targets, we use a special
digital receiver back-end, the space debris receiver. Signal to the space debris receiver is
branched off from the EISCAT analog signal path at the second IF (IF2) level. Figure 2.1
shows the main blocks of the SD receiver, connected to the EISCAT UHF system at the
Tromsg site.

EISCAT standard data processing handles a multi-frequency transmission in the tra-
ditional way, by feeding the IF2 data to multiple hardware channels, each tuned to a
particular center frequency. The end result is several sample streams, one for each chan-
nel. Our approach in the SD receiver is different. We sample fast enough to capture the
relevant part of the analog IF2 band into a single digital stream. We call this type of
data multichannel complex data [5]. According to the (bandpass-) sampling theorem,
if the spread of frequencies is B MHz, we need to take B million complex samples per
second, in the minimum. For our most often used measuring mode, where there are two
frequency channels 300 kHz apart, we have normally used 500 kHz sampling rate. But we
have also verified that the SD receiver can handle sampling speeds up to 2.5 Msamples
per second.

In addition to the standard reception, our data processing requires that the transmis-
sion waveform is measured. As indicated in Fig. 2.1, EISCAT provides the transmission
sample signal (TS) time-multiplexed into the same data path as the reception. The
multiplexer switch is controlled by the receiver protector bit (“TX bit”), generated by
the EISCAT radar controller microprocessor. We routinely record the receiver protector
bit into our data stream to mark out the transmission blocks. The bit is stored into the
least significant bit of the imaginary part of the 16 4+ 16-bit complex integer data words.
With this arrangement, the transmission sample signal gets automatically sampled with
the same sampling rate as the actual reception (though we would actually like to sample
it with a higher rate).

The core of the data acquisition system is a custom PCI-board which performs signal
sampling, quadrature detection and sampling rate reduction. The board was developed
originally for ionospheric tomography by the now defunct Finnish company Invers Ltd.

The A/D converter on the PCI board samples at 40 MHz. The resulting real-valued
sample stream is processed by programmable logic chip, from the Xilinks SpartanXL
family, to perform quadrature detection, essentially by doing Hilbert transform. The
result of the transform is a complex-valued 10 MHz sample stream, which represent the
negative frequency part of the spectral contents of the analog input. The chip then
decimates the 10 MHz stream to the final sampling rate. Typical decimation factor M is
20, which yields 500 kHz final sampling rate. The decimation is done by adding samples
in blocks of M; this ensures proper filtering. This processing chain is analysed in more
detail in section 3.2 and in appendix A, where we especially pay attention to the effects
of the decimation filter.

It may be noted that there is no separate multiplication to baseband in this scheme.
Instead, the customary frequency component at baseband is created by the undersam-
pling. With the 40 MHz primary sampling rate, the arrangement requires that the
band-limited analog input is centered at 10 MHz. Although it is possible to run the
A /D converter on the board at other sampling rates, the 40 MHz is a most convenient
choice. That the two frequencies EISCAT nowadays most often use in the standard
measurements, are 10.1 MHz and 9.8 MHz, is a happy coincidence. The next version of
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Figure 2.1.: The space debris receiver connected to the EISCAT UHF radar. The SD
receiver consists of a measurement computer and an analysis computer. The
measurement computer hosts a custom signal processing board (GURSIP).
The primary analog input to the SD receiver is the EISCAT second in-
termediate frequency band. The input contains, time-multiplexed, both
the standard received signal and the transmission sample signal (TS). On
the processing board, there is an analog-to-digital converter (A/D) taking
40 megasamples per second; a direct-digital-synthesizer chip (DDS) which
provides clock signals on the board, phase-locked to the host radar’s 10 MHz
frequency reference signal; two Xilinks signal processing chips (XILINX) to
perform signal demodulation and sampling rate reduction; and a memory
buffer for temporary storage of the complex samples. The recorder program
running on the measurement computer moves the samples over the gigibit
network link to an external FireWire disk, mounted on the analysis com-
puter. Target detection is done by the scanner program running on the
analysis computer, using the FMF-algorithm. After detection, two other
software modules, the archiver and the analyser, store away the event’s raw
data and estimate the target parameters.
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2. Hardware

the SD receiver should have a complex mixer built-in.

The PCI board is mounted on a Macintosh G4 workstation, running under the Mac
OS X version of UNIX. The Mac G4 we call the measurement computer. In addition,
there is a dual-CPU Macintosh G5 computer for data analysis. The Mac workstations
are connected to each other via a gigabit Ethernet link, and are also connected to the
site LAN. The measurement computer runs software from Invers Ltd to read the sample
data from an onboard buffer and write them to hard disk, either local disk, or, normally,
a disk mounted over the gigabit link from the analysis computer. The data accumulation
rate to the disk is between 7 and 30 GBytes per hour (2-8 MBytes s~!), depending on
the sampling rate. The maximum sustainable transfer rate over the data link in this
configuration is more than 20 MBytes s~ !, so even the 8 MBytes s~ ' rate is only a
minor load, and does not affect significantly the computing performance of either of the
participating workstations. The LAN connection is used to access the EISCAT process
computer, to update the time base in the G4 and G5 once every 5 minutes, using the
ntp protocol. This ensures that the time base in the Macs stays within 20 ms of the
time kept in the EISCAT system. This is more than adequate for time-stamping space
debris events.
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3. Theory

3.1. The match function method

We want to estimate the parameters of a hard target echo s(t) in the presence of white
gaussian noise (), in an optimal way. We denote by z(t) the received signal,

z(t) = s(t) +(t) . (3.1)

We denote by z(t) the transmission sample signal (the signal TS in Fig. 2.1). We
ignore here the frequency translations done in the actual receiver, treating z, s, x and
~ as complex-valued (detected) signals. The frequency translations affect both the echo
signal and the transmission sample signal by a common factor of the form exp(iwpot),
where wr,o is some local oscillator frequency, and hence cancel out of the correlation
products like s(t)Z(t).

To find an optimal estimate (or at least a well-defined estimate), we will use the
approach of Bayesian statistical inversion. The basic idea is to use a parametrized
model for the signal s(¢) and find the most probable signal among the set of model
signals, given the measured signal z.

We specify the model signals explicitly in section 3.3. Here we will make use only of
the property that the model depends linearly on one parameter, the complex amplitude
b, and in addition depends on some other parameters (range R, radial velocity v and
radial acceleration a in our case), which we collectively denote by 6, so that

s(t) =b- x(0;t). (3.2)

We sample the signal z(t) using sampling interval 75, and get N samples z,, during a time
interval T,., which we call the integration time or the length of the coherent integration.

It makes sense that after a specific measurement result (-vector) z, some parameter
values (b,0) are to be considered more likely than others, in a way that depends on
z. That is, the probability of the various imaginable values should be describable by
some conditional probability density, with z in the condition. In the Bayesian world
view, that density is termed the posteriori density, and is denoted here by Dy (b,0|z).
The inversion problem is to utilize the measurement to find the posteriori density. The
posteriori density is the most complete inference that can be made about the parameter
values, based on the measurement. Normally, one wants to condense the inference to
single numbers, the parameter estimates, together with some simple measures of error
like some confidence intervals. There is no unique way to select “best” estimates, but
the standard Bayesian criterion is to use the most probable values:

o~ o~

(b,0) = arg max Dy (b,0]2). (3.3)

We now derive the posteriori density. We denote by Dj(zy|s,) the conditional proba-
bility density of z,, given s,. This is just the probability distribution of the value of the
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3. Theory

nth noise sample v, = z,, — Sn,

1 1, 52
Di(znlsn) = —ge o270, (3.4)
o
where o2 is the variance of the complex gaussian noise. We assume that the noise is
white so that the noise samples are uncorrelated. Then the conditional joint probability
density to produce a particular measured vector z if the actual signal vector is s, is

N-1
1 — 1 |jz—s|2
D(z|8) = H Dl(zn‘sn) = (7T0'2)N -e oz lz=sll . (3.5)
n=0
The density D(z|s) is called the direct theory. Given the direct theory, the Baysian

solution to the inversion problem is
Dy (b,0|z) = C'(2) - Dpe(b,0) - D(z|s). (3.6)

Here C’(z) is normalization factor. The new factor, Dy, (b,6), is called the prior density.
The prior density is a weight that can be used if it is known a priori—before making the
measurement—that some particular signals s(b,6) tend to occur more frequently than
some others.! Using Dy, might actually make sense when measuring space debris, to
throw out detections with highly unlikely parameters. But so far we have used constant
priors. For constant prior, it follows from Eq. (3.6) and Eq. (3.5) that the sought-for
posteriori density is
I N 2
Dy(b,6]2) = C(z) - e o2 70X O (3.7)

It follows that finding the most probable parameters amounts to minimizing the least-
squares norm,

o~ o~

(b,0) = argmin |z = b x(0)]]. (3.8)

That we should arrive at this most basic technique of parameter estimation, least-
squares fitting, is perhaps not surprising. But what we have gained by walking though
the Bayesian route, is that not only do we have a method for acquiring the parameter
estimates, but we have an explicit expression, Eq. (3.7), for the posteriori density. In the
future, we intend to make use of the posteriori density in error analysis. Due to highly
non-linear dependence of the model functions y on the parameters-to-be-fitted, 6, error
estimation is not trivial.

A straightforward approach to the minimization problem expressed in Eq. (3.8) is to
discretize the parameter space and perform an exhaustive search. We now show that
the search space dimension can be reduced by one by making use of the property that
the amplitude b enters the problem linearly. Our result can be confirmed analytically,
but will be here reasoned from basic vector geometry. Referring to Fig. 3.1, the set
M of model vectors {bx(#)} consists of 1-dimensional rays C, through the origin of
N-dimensional complex vector space C. The rays are generated by a set of basic
vectors x(6). According to Eq. (3.8), we need to find the shortest distance between the
measured point z and M. The figure suggests that we need first to find the ray Cs that
is as parallel as possible with the vector z. Then the point in M that is nearest to z

! Dpe(b, 0) is, by definition, equal to the marginal density [ Diot (b, 8, z) dz of the probability distribution
Dot (b, 0, 2), the probability distribution of the whole system, which contains on equal footing both
the measurement results z and the signals s(b, 6).
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3.1. The match function method

Figure 3.1.: Geometric interpretation of the MF method. The sought-for best estimate
of the signal is the point § in the set M of model functions that is nearest
to the measured signal z. The “conically-shaped” set M consists of rays
C, = {ax: a € C}, generated by a set of basic model signals x(#). MF(0) is
defined as the length of the orthogonal projection of z onto the ray C, ).
Maximizing MF(f) gives the ray Cy that gets as near to the point z as is
possible in M. The estimate 5 is the orthogonal projection of z onto Cy.

is the orthogonal projection 5 of z onto Cg (a theorem in linear algebra says that the
orthogonal projection gives the shortest distance of a point from a linear subspace; and
the rays are linear subspaces), and is computed in the standard way as

2 %) o
%112

The real problem is to find Y. With z fixed, a sufficient measure of parallelism of a
ray C,(g) and the vector z is the length of orthogonal projection of z onto x; the ray
is the more parallel or antiparallel, the longer the projection. We call this measure of
parallelism the match function®, MF. We have

s=

(3.9)

_ 1z x(8))]
ME(9) = S (3.10)

The notation indicates that the MF is a function of the parameter 6 that determines the
vector x. Note that the MF does not depend on the scale of x (x and a x give the same
value of the MF). We need to maximize the MF to get the maximally parallel model
vector X = X(@):

0 = arg max MF(6) . (3.11)

How the maximum is computed in practice is discussed in section 3.4; basically, we
perform an exhaustive search over a grid of values of 6.

2 Intuitively, the more parallel two signal vectors (functions) are, the more they look alike, which is
one reason for our nomenclature. A more serious reason is that “MF” also stands for matched filter.
With velocity and acceleration fixed, so that MF is function of the range variable only, R — (z, x(R))
amounts to ordinary filtering of z by the filter A(t) = x(0)(¢) which is matched to the transmitted
signal. The MF is a generalization of this concept to more general kind of pattern matching.
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3. Theory

The energy® W), of any correctly sampled complex-valued signal y(t) is

W, = / ()Pt = 723 [yal? = 72, (3.12)

From Eq. (3.9)—(3.11), the energy W5 of the signal estimate § is

Ws 2 _ =X MF(8)12 MEF?2
= = = F == F . -1

In all our data analysis we have used W5 as the estimator of the signal energy Wi.
However, as will be discuss in section 3.5, the estimator contains traces of the noise
background, and is a biased estimator.

We summarize the match function method of parameter estimation

e Get the parameters 6 by locating the position of MF maximum, Eq. (3.11).
e Get the signal energy as the square of the value of the MF maximum, Eq. (3.13).
According to Eq. (3.9), the complex amplitude b is be estimated as

f X
IR

but because the scale of the X is arbitrary, so is the scale of b. Only the product s = /b\SZ
is well-defined.

A noise-free MF is useful for theoretical considerations. Without noise, both factors in
the inner product in Eq. (3.10) are model functions. We will reserve a separate notation,
AF, and use the standard name, ambiguity function [6], for the noise-free match function,

(3.14)

AF(8; 0) = LX(%0) X))} (3.15)
Ix ()]l
In the MF method, target detection is based on the estimated signal energy W5 ex-
ceeding a threshold. We have so far set the threshold, by visual inspection of the data,
to be so high that there are only very few false alarms. In fact, we need to use a range-
dependent threshold, such as shown in Fig. 4.4 on p. 64, because the lower altitudes,
typically up to about 500 km, are often affected by strong clutter from the ionosphere,
and need a higher threshold.
We set the detection threshold in terms of a dimensionless quantity, the ratio of signal
energy to the noise power spectral density (PSD) G,. We call this ratio the energy-to-
noise ratio, and denote it by SNRy,

w.
SNRy = —~. (3.16)
Gy
We assume that the system noise temperature Ty is defined in such a way that the
noise PSD density of complex-valued wide-band noise can be written as

G- = kTays, (3.17)

3 We consider the signals y(t) to have the dimension of voltage, and assume unit impedance, so that
ly|? is the signal power. The impedance does not matter, for only signal ratios, like |s|?/|v|?, are used
when comparing to the physical world. We could also do without explicitly tracking the sampling
interval, except that we do not want to change the dimension of energy in the middle of a chain of
equations.
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where k is the Boltzmann constant. The power of such a noise after being filtered with
a boxcar-shaped low-pass filter that extends from frequency —B/2 to B/2 is

P, = kTyyB. (3.18)

We call B (rather than B/2, as is often done in the literature) the filter bandwidth. The
digitally implemented filter in the SD receiver (see appendix A) is boxcar-shaped in time,
not in frequency. It’s impulse response is by design precisely matched to the sampling
frequency. For such a filter, it can be shown that the noise-equivalent bandwidth B’ is
equal to the sampling frequency, so that, on the one hand, we have

B =—, (3.19)

Ts

and on the other hand, B’ also satisfies Eq. (3.18), by definition of the noise equivalence.
From Eq. (3.16)—(3.19) and (3.13) we get

S/NR\N _ W5 _ Ws- B’ _ (max MF? - 7,) - (1/75) _ maXMFQ.

(3.20)
Klys KTy B’ P, P,

We treat the system temperature as a known, fixed radar parameter, and use Eq. (3.20)
to find the signal energy in physical units. We use that estimate to find a lower limit,
RCSin, for the target’s radar cross section (RCS). From the standard radar equation it
follows

(47)3 kTyys - R - Wy
G(¢)2-N\2-P,-DT.~

Here R is target range, A is radar wavelength, P, transmission power, D transmission
duty cycle so that DT, is the actual length of transmission during the integration 7.
The factor G(¢) is the antenna power gain in the direction of the target within the
radar beam, an angle ¢ offset from the known direction of the antenna optical axes. In
the EISCAT system, it is normally not possible to find the offset angle. As a way of
cataloguing the observed signal strength, we therefore normally quote RCS,in, which
we get from Eq. (3.21) by setting ¢ = 0,

RCS(¢) = (3.21)

RCSmin = RCS(0). (3.22)

We will argue in section 3.5 that the energy estimate W5, defined in Eq. (3.13), is a
biased estimate. In a typical situations EW3 is larger than W, by as much as about ten
times the mean background noise power o2. The positive bias in the energy estimate
means that we tend to overestimate the radar cross section when we use W5 in Eq. (3.21)
without correction. In the data analysis reported in chapter 5, we, nevertheless, have
not applied any such correction.

3.2. Receiver effects

The MF method provides an estimate of the energy-to-noise ratio SNRy for the signal
and noise which have been processes through the receiver. But to estimate the tar-
get cross section, we need an estimate of the signal energy before the signal has been
“corrupted” by the receiver. The noise that enters into the SNRy estimate has come
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through the same receiver path as the signal. Nevertheless, there is in general no guaran-
tee that the relatively wide-band noise is attenuated by the same amount in the receiver
as the signal, which typically consists of a few relatively narrowband frequency channels,
transmitted cyclically.

In the standard EISCAT data analysis, the receiver effects are taken into account by
incorporating the receiver impulse response? into the estimation theory, in the model
functions to be fitted. We might ultimately need to do so for the space debris data
analysis also. But in this paper, we try to keep the theory simpler by ignoring the
receiver response in the model functions. The price is that we need to be prepared to
correct the estimated energy. We handle the space debris receiver signal processing in
more detail in appendix A, see also Fig. 3.2. It turns out that for our most common
measuring configuration, the estimated energy of the processed signal (relative to noise
power) is about 75% of the value in front of the receiver.

For small spherical targets the radar cross section, and therefore the received power,
varies proportionally to the sixth power of the target diameter. Thus, a 30% under-
estimate of received power results only in 5% underestimate of the effective diameter.
Considering other serious problems that we have in determining the targets’ radar cross
section, we have so far simply ignored the receive effect on energy estimate. The other
problems include us not knowing the efficiency of the coherent integration (that is, how
coherent the “coherent integration” actually is); the problem of not knowing the position
of the target within the radar beam; and the problem of (not) knowing accurately the
radar’s transmitted power.

Ignoring the receiver impulse response is not expected to effect velocity estimate. As of
the range estimate, the filter causes a “filter delay” of the order of the sampling interval
(0.5-2 ps in our case), and this would in many systems shift the estimated range. But
because our model functions are constructed from the actually measured transmission
sample signal, and that signal travels though the same receiver path as the target echo,
the filter delay should not be an issue.

3.3. The signal model

We will model the phase of the received signal s(t) by assuming that the phase behaves
as if the signal would reflect from a mirror that moves with constant radial acceleration
ag. We will assume that during an integration time T, which typically is about 300 ms,
the amplitude b of the signal stays constant. Denoting by x(¢) the transmitted signal,
and by t’ the delayed time, with reference to Fig. 3.3 we take

s(t) = bx(t). (3.23)

For any given target radial motion r(¢), the delayed time for reflection from a point
target is determined by

oy t'+t
t—t = () (3.24)
&
With constant radial acceleration, the target range is
1
r= T(R(), V0, AQ; t) = Ro + vot + 5&0752 . (3.25)

4 Normally, only the impulse response of the post-detection filters is incorporated. But in the SD
receiver, the receiver bandwidth can be up to 256% of the width of the IF2 band, and then the IF2
band shape cannot be automatically ignored.
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Figure 3.2.: Filtering in the SD receiver. The top panel shows the positive frequency
component of the spectrum of EISCAT second IF analog band, essentially,
the system’s antialiazing filter shape (zero dB corresponds to signal level
-50 dBm). This is also the power spectrum of analog system noise at this
point. The IF2 band is sampled at 40 MHz as the first step in the SD
receiver, and then “quadrature detected” and decimated to a 10 MHz com-
plex signal, which has only a single spectral component. We ignore the
band shaping in the Hilbert-transform/decimation step, and assume that
the top panel also approximates the shape of the digital band, and digitized
noise, at the 10 MHz sampling rate level. For the standard taul and tau2
experiments, the signal frequency channels are 300 kHz apart and map to
9.8 MHz and 10.1 MHz in IF2. Thus, 500 kHz sampling rate is more than
enough to capture the information content of both of these channels simulta-
neously. This allows undersampling the 10 MHz data stream to a +250 kHz
baseband, by decimating the stream by a factor of 20. The decimation is
done by averaging over 20 samples, then taking next the 20 samples, and
so on. The averaging amounts to filtering by a digital filter that has the
transfer function shown in the bottom panel. The digital filter attenuates
the two frequencies (unevenly), so that the energy of the measured signal is
only about (0.757% + 0.9362) /(1% + 12) = 75% of the energy at filter input.
The noise-equivalent bandwidth of the filter is equal to 500 kHz, the final
sampling rate.
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Figure 3.3.: Transmitted wave reflected from a point-like target which is moving with
constant radial acceleration ag. The parabola shows the radial component
of the target’s position vector in the coordinate frame of a stationary radar
antenna, during the few hundred milliseconds of a coherent integration. The
full three-dimensional velocity vector typically is very nearly constant in that
frame during the integration time. The integration starts at time 0 with the
transmission of the first pulse belonging to the integration. At the start of
the integration, target range is Ry and radial velocity is vg. Note that the
diagram is not drawn to scale.

For the motion (3.25), Eq. (3.24) is quadratic in ¢'. The solution of the equation for the
pulse propagation time ¢t — ¢/, with an appropriate choice of the sign of the square root,
is

1
2 2 2 2 INE
R R = (e (3.26)
C Cc C C

Equation (3.26) can be simplified by expanding the square root to a power series. Care
must be exercised regarding to which terms can be dropped from the expansion. With
parameter values that are typical at EISCAT UHF when antenna is pointed nearly
vertically,

Ry ~ 10°m,

vy ~ 10° ms~! ,
ap ~ 10% ms™? ,
wi ~ 6-10° Hz,

all terms following the “1” inside the square brackets in Eq. (3.26) are quite small
compared to unity. But what actually determines which terms X can be dropped is
the requirement that the corresponding phase factor wlz—gX , where w; is the radar
transmission frequency, stays very small during the integration time. Using the first
three terms of the power series expansion of [1 + (...)]2, and then dropping all the
individual terms for which the corresponding phase factor is less than 0.1 rad when
integration time is less than a second, we are left with

2 1 R
t—t = E Ry + vot + 5&0752 — ('UO + aOt)TO (327)
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_ 2 _Boy Lo Boy

= Ry + vo(t - )+ 2a0(t c ) (3.28)
2 R

= —rit——). 2
“r(t - =2) (3.29)

The term _TRO is a natural first order correction to the time instant of pulse reflection;
the only non-trivial aspect is that this correction already is sufficient (for our typical
measuring configurations). Thus, the model functions x(R,v,a;t) to be used in the
MF computation, Eq. (3.10), are of the form

2 R
X(R,v,a;t) = x(t — p r(R,v,a; t — Z)) . (3.30)

Note that nothing has been assumed about the transmission z(t) in this derivation
so far. In principle, as long as the transmission can be accurately measured via the
transmission sample signal, we do not even need (ever) to know what transmission has
been used; the MF machinery incorporates the transmission transparently. This is a
good thing for automated piggy-back measurements, where we do not have any control
on the transmission EISCAT might be using at any given time.

The reality, of course, is rather different. A basic problem is that the radar’s noise-
environment is often poorly approximated by our assumption that it consists only of
stationary gaussian noise. Distortions happen in practice, one of them being that the
ionosphere often becomes visible in our data (Fig. 4.4). More or less ad hoc, manual,
experiment-specific solutions are used to counter these problems. Also, we cannot at
the moment at all handle the case that the antenna pointing may change during a
measurement; but many EISCAT measurements use cyclical antenna pointing schemes.
In practice, both now and into the foreseeable future, we need to know a priori, and
even select, the EISCAT measurements that we are making use of in the SD work.

3.4. Computational aspects

Here we derive the approximation for the signal model that we have been using in our
work so far. Assume that transmission can be described as

z(t) = e(t)e™1t (3.31)

where w; is the carrier frequency, and the transmission envelope €(t) is a slowly changing
function, describing, say, a binary phase modulation, as is often the case in EISCAT.
This description is good for a single-frequency-channel transmission. We drop the correc-
tion —R/c to the pulse reflection time in Eq. (3.30), and use the special form Eq. (3.31)
of transmission to write the model function as

X(0) = et — Zr(t)) =201 (3.32)
C

Inside the slowly varying transmission envelope, we can assume r(t) stays constant,
r(t) = R, during the integration time. Then, from Eq. (3.32) and Eq. (3.31),

2R 2 ) 2 a2
¢ _ ik zwl(t—;R) z[(—wlzv)t—i-(—wlz)t ]
X = b= 2Hygee-tn
92 .
= x(t—jR)e’(“D”o‘DtZ’), (3.33)
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2—: and ap = —w1 % are the Doppler-frequency and the rate of change

of the Doppler-frequency, which we call the Doppler-drift. The approximation (3.33) is
often used in the literature (usually without the drift term), and is described by saying
that the received signal is a delayed-in-time, Doppler-shifted replica of the transmission.
With the model (3.33), the match function definition in Eq. (3.10) can be expanded for
continuous-time signals as

where wp = —wq

o 2(0)3(t = Z)eentrent? gy
v Wk ’
where Wy = [ |z(t)|?dt is the energy of the transmission sample signal.

For signal vectors, we need to take into account that the transmission samples x,, are
only available at times n7;. This already forces us to discretize the range variable. With

MF(R,v,a) = (3.34)

. CTg
Ry=j- 2 (3.35)

the match function becomes

N-1_ = —i(wgnt+agqn?)
MF(R;, v, a) = |2=n=0 ZnTn—jc g (3.36)

]

where the normalized Doppler-shift and Doppler-drift are

2
wda = _wl'rs;v; (337)
c
aq =~ (3.38)
c
At the points
2
ok = kaTTC (3.39)
C
Eq. (3.36) can be written as
N-1l/ — —iagn?),—i2%kn
MF(Rj,Uk, a) _ |Z’I’L=O (znxn*]e )e N | , (340)

which shows that at these points the MF can be evaluated using FF'T. The denominator
||z|| is the square root of transmission sample energy, and is (of course) independent of
R,v and a. The MF computation via Eq. (3.40) is summarized in Fig. C.1 on p. 116.

In most of our data analysis, we have taken the radial acceleration to be a deterministic
function of range, a = a(R). We have used the acceleration that corresponds to target
being on circular orbit and the antenna being pointed vertical,

Rg R

©=90 5 Ry th

where Rpg is the Earth radius 6360 km, gg is the acceleration of gravity at zero altitude,
9.8 m s~2, and h is the target altitude. Experimentation with data has shown that not
much sensitivity is lost in practice even if the acceleration is not varied.’

)2, (3.41)

5 Which is perhaps a bad thing, because a priori, we would expect the MF to be rather sensitive to
the acceleration being correct. For instance, we show in Fig. 3.5 on p. 38 that with 0.3 s integration
time, an 10 ms~2 error in a should cause the coherently integrated amplitude to drop by about 50%
from the ideal case. That this appears not to happen when we vary the acceleration in the analysis of
real data, may indicate that there are other factors that are causing the signal model to be seriously
non-ideal to begin with.
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3.5. Bias in the energy estimate

In our routine analysis therefore, we search the MF maximum only over the (R;, vy)-
grid. Even then, the detection computation, using full resolution and without any further
approximation, becomes too large. Assume we want to cover 1000 km in range and use
0.3 s coherent integration. Assume that the sampling interval is 0.5 us. Then the input
data vector is 600,000 points long, and the FFT requires about 60 million floating-point
operations. The 1000/0.075 ~ 13,000 range gates require about 800 x 10 floating-point
operations. On a dual-processor 2 GHz G5 Mac, we get about 1 GFlops combined speed
in FFT of this length, so will need about 800 s to handle the 0.3 s of data. Normal
EISCAT UHF phase-coded transmission uses baud length of about 20 ps or more. For
these modulations, we can safely relax the range gate separation in the detection phase
somewhat, say by a factor of 10 (this also ensures sufficient Doppler-frequency coverage).
But this still leaves us more than two orders of magnitude short of real-time speed.

3.5. Bias in the energy estimate

In signal energy estimation, there is an additional worry besides the receiver response.
By design, the MF method gives the most probable value s of the signal vector, given
the measured vector z. The § is an unbiased estimator of the signal, that is, if we could
repeat the measurement so that the actual signal vector always is sg, due to noise we
would get different observed signals z, but the mean of the estimates computed from
those z via the MF method would be sg. But the situation with the estimate of the
signal energy is not as good. We are using as the energy estimate the energy W5 = ||5]|?
of 5. This choice seems natural enough, and the estimate is readily available (once §
is found). However, in general, the estimate does not provide the most probable value
for signal energy among those signals that are compatible with the measured vector z.
Neither is it an unbiased estimate, in repeated trials with the same signal sp, the mean
of the estimated energy would not be Wy,. The mean of the estimated energy would be
Wy, plus some “background” value.

Unfortunately, we have been unable to decide what if anything we should use as the
“background” here. Normally, when radar people compute signal power, or power spec-
trum, the practice is to subtract from the power (-spectrum) the corresponding mean
background power (-spectrum), computed from a segment of data where it is known a pri-
ori that no signal is present. But it is not apparent to us that such an approach is relevant
here. The coherent integration does not quite correspond to the typical repeated-trial
radar measurement where one averages over several measurements of identically repeated
radar pulses. And even if we could imagine that our MF scheme were some kind of re-
peated trial, the MF method involves maximization over noise-contaminated quantities,
and it is not clear what we should use as the “mean background” then. If, in the com-
putation of the MF maximum, we would know range and velocity a priori, and so would
not need to maximize MF over those variables, the bias could be removed simply by
subtracting unity from our standard SNRy estimate. This is seen as follows.

Take, for definiteness, the signal model functions x(R,w;t) to be of the often-used
form of delayed-in-time, Doppler-shifted-in-frequency replica of the transmission x(t),

() = 2(t — ?)eiwt , (3.42)

and let the noise by 7(¢). Assume that the target Doppler-shift is known to be wy and
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range to be Ry, so that the echo signal is
s0(t) = bo x(Ro,wo;t) = xo(t) - (3.43)

In the MF method we now need only to determine the signal amplitude by. The best
model function needs not to be searched for over R and w, but can immediately be nailed
down as ¥ = xo. The standard MF method signal estimate then becomes

(boxo + 75 x0)

S=
X0l

X0- (344)
Taking norm squared and then expectation value of Eq. (3.44), and assuming that noise
over repeated trials has zero mean, Ey = 0, gives

E|(7, x0)|?

—~12 2 0

E([I51%) = llboxoll” + =5 — - (3.45)
[Ixoll

By expanding the inner product in the denominator of the second term in terms of the

noise samples v, and model samples xg, and using the premise that the noise samples

are uncorrelated and have variance o2, so that

E (Y ¥n7) = O - 02, (3.46)

we get from Eq. (3.45)
E([511%) = llsoll* + 0. (3.47)

This shows that there is a bias equal to the mean noise power in the signal energy
estimate in this case, and thus the energy-to-noise ratio SNRy, estimated by ||5]|%/02,
has the bias of unity.
However, normally we do not know the correct model signal a priori, but base the
energy estimate to
[{Boxo + 7, X(R,w))?
[Ixoll®

(we used xo in the nominator instead of x(R,w), for the norm does not depend on R
and w for the model functions (3.42)). It is not clear what the bias is in this case; there
seems to be no immediate way to evaluate E|/3]|?. However, for the case of no signal, we
can argue that the bias must be (considerably) larger than the o2 of Eq. (3.47). With
Xo = 0, we get from Eq. (3.48)

(3.48)

||§||2 = max
w,

B(J3]?) = Emax [0XE D

3.49
o ol (3.49)

That is, we first, for a given trial noise «, pick the maximum value of the noise-only,
two-parameter MF, and then we form the expectation by averaging over those values.
We saw in Eq. (3.47) that at any fixed point (w, R), MF? has expectation 2. That
implies that from trial to trial, MF? must get values both smaller and larger than o2.
In each trial, MF(R,w) is estimated on several tens of thousands of points, and will
somewhere have values that are considerably larger than o2.

Figure 3.4 shows MF(R,w), for a fixed R, as function of w for typical data. On
this single slice already, the highest noise peak has value of about 3. (There is actual

signal visible in the data in Fig. 3.4, but its effects are local and do not affect the noise
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Figure 3.4.: The problem of background subtraction. The figure shows the velocity slice
v = MF (R, v) through the range R = R that maximizes the MF. The slice is
essentially the noisy power spectral density of the tau2 transmission envelope
over about 30 IPPs. The noise background has spectral density of about o2
(the mean of MF /o is 0.89), while the maximum value of the background,
away from the immediate neighborhood of the three signal peaks, is about 3,
and is approached in several positions. The spectral peak value, MF /o ~ 7,
equals to /W5, the square root of the energy of the Bayesian signal estimate
5. We use W5 unmodified as the signal energy estimate W,. The question
is, how much does the noise affect the peak value, and should we make some
kind of background subtraction in order to get an unbiased energy estimate?
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background further away.) Note that the mean noise level is about o2 as expected.
Therefore, typically max MF? will be about 902 or even slightly larger. So we seem to
have E||5]|? ~ 1002 when there, actually, is no signal.

Should we start subtracting 1002 from max MF? in our energy estimates? We don’t
know. We would also like to point out that when doing incoherent pulse-to-pulse inte-
gration (see next section), we do not seem to have this kind of trouble. We have then
a clear-cut repetitive-trial experiment arrangement, and it seems to make better sense
to form first the expectation value of the MF? at every point as in Eq. (3.48), and then
pick the maximum from the averaged MF. It seems reasonable to make a background
subtraction by o2 (= the background spectral density) in that case. On the other hand,
as will also be argued in the next section, when there is only a single transmission pulse
to be integrated, the coherent and non-coherent integration are identical operations.
What is the correct “background subtraction” then?

3.6. Coherent integration

We have been saying that the MF method of detection and parameter estimation, the
recipe
0 = arg max MF(9), (3.50)

accomplishes “coherent integration” of the signal (# refers to the parameters of the signal
model, § = (R,v,a)). Considering that our MF, and the entity that people are calling
the radar ambiguity function, are pretty much the same thing, it is odd that the books
we have consulted don’t mention coherent integration in connection of the ambiguity
function. Typically, we integrate the complex-valued signal z(t) over a few tens of
consecutive transmission-reception (T/R) cycles. In an EISCAT measurement, a single
T/R cycle has length Ticp, ~ 6-10 ms. Typically we use integration time 7. ~ 300 ms.

Before elaborating on coherent integration, we explain what we mean by signal phase
coherence (another concept often carelessly defined). In the simplest form of the concept,
a complex signal

s(t) = a(t)e’™®, where a(t) > 0, (3.51)

is said to be phase coherent if it consists of segments of a single sinusoid e*“*. The
essential aspect here for our purposes is not that the phase can be accurately described
by the particularly simple function ¢(t) = wt + ¢, but rather, that the phase can be
described accurately and deterministically by some parametrized function, during some
time interval, called the signal coherence time. For times substantially longer than the
coherence time, the actual phase deviates from the model phase by larger, and typically
ultimately random, amounts. Viewed this way, the coherence of a signal is always relative
to some reference—either a computed model, or an actual signal like an oscillator signal
for example—so that a signal may be non-coherent with respect to some model, but can
still be coherent with a more accurate model.

In its simplest form, coherent integration of pulsed radar signal has meant just adding
up the signals z,,,

zm(t) = z(t —mTiep), t€]0,Trepl, (3.52)
Sm(t) + Vm(t)7 (353)
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3.6. Coherent integration

from M successive T/R cycles, to form the integrated signal

M
Weon(t) = Zm(t). (3.54)

m=1

To make sense, coherent integration in the basic form (3.54) requires that the signals
sm(t) in Eq. (3.53) are identical. In practice this means that the transmission must be
identical from pulse to pulse. It also means that the target must be stationary so that
there is no Doppler-shift, because a non-zero Doppler-shift wp would introduce unequal
phase factors e®p™Trer to the z,,’s. In addition, all the oscillators used in the radar must
be well-behaved so that the reception itself does not introduce extra phase shifts. Neither
of the first two conditions is satisfied in EISCAT measurements; a more sophisticated
approach is required to implement coherent integration from pulse to pulse in real life.
Such an approach is provided by the MF method, as we will show shortly. But first we
will discuss the general benefit of coherent integration. We will also recall the standard
method of using range-gated power spectra for detection, so that we can compare it to
the MF method.

When the coherent integration (3.54) can be used, the benefit is that, for white noise
7, the signal-to-noise ratio in weep (t) is M-times larger than the signal-to-noise ratio in
an individual z,,(t). The alternative to coherent integration is non-coherent integration,
achieved by computing

M
wnoncoh(t) = Z |zm(t>‘2 (355)

Non-coherent integration does not improve signal-to-noise ratio, but it still increases
threshold detection sensitivity, by reducing the variance in power (o2[wnoncon] < o2[|2m[?]),
so that a given threshold will result in fewer false alarms.

Whether one uses coherent or non-coherent integration, or no integration at all, a sim-
ple detection criterion is to use envelope detection. In envelope detection, one searches
for the power-domain envelope |z(t — 2R/c)|? of the transmitted waveform x(t) in the
measured power-domain signal such as |2, ()|, |weon(t)|? or Wnoncon(t). The pattern
matching may be done by cross-correlation, so that the detection criterion could be

m}&{mx( [weon (1)]?, |2(t — 2R/c)[*) > Threshold . (3.56)

The advantage in working in the power domain is that the signal needs not to be
phase coherent in any way, not even within a single pulse, because any phase factor
¢® in the signal will just yield unity. However, for phase coherent signals, like the
Doppler-shifted replica of transmission, which has phase factor P!, the standard way
to increase detection sensitivity (and to find the value of the Doppler-shift), is to compute
the range-gated power spectrum G(R,w). For a single (non-coded) pulse z,, of length L
the power spectrum is

1 [2R/ctL ,
G(Rw) = 7| /2 L, e (3.57)

The spectrum may in practice also be computed via the signal autocorrelation function,
as is normally done in EISCAT. The detection criterion is

max G(R,w) > Threshold. (3.58)

,w
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For a signal that has small bandwidth Bs ~ 1/L compared to the noise bandwidth
B, performing the detection via power spectral density instead via total power can
increase the signal-to-noise ratio substantially. The increase is roughly by the factor
B, /By relative to SNR = P/ P,, where Ps and P, are the total signal and noise power,
respectively. The increase comes about because the total signal power Ws/L, where Wy
is energy of the pulse of length L, is condensed into a spectral band that is narrower
than the noise band by this factor. Assuming the noise power spectral density G to be
roughly constant with value kT4, and denoting by G the power spectral density of the
pulse, we can write the above estimate of the peak signal-to-noise ratio as
maxGs By, P, B, E/L E;

N B T - , 3.59
G, B, P, 1/L kTysB, KTy (3:59)

For signal correctly sampled with sampling interval 75, we can write Eq. (3.59) also in

the form
max Gg N B,

-, (1/7) _

G ~B SNR ~ (/L) -SNR = Np, - SNR, (3.60)
where Ny, is the number of samples taken from the pulse L. The Np-fold increase of the
signal-to-noise ratio, over the signal-to-noise ratio of any typical single sample, signifies
coherent integration of the individual samples, and is consistent with our underlying
assumption of signal phase coherence.

We now verify that, for a single non-coded pulse, the square of the match function
MF(R,w) reduces to the range-gated power spectrum as defined in Eq. (3.57). For such
a pulse, the model function (ignoring the acceleration term) is

X(R,w;t) = xz(t — 2R/c)e™t, (3.61)

where z(t) represents the transmitted pulse,

=10 shermier 52

Thus
MF(R,w)? = [GxBw)l <ﬁx>(<§2wa;l)| Z'z (3.63)
LEmmEs
LB .
— G(Rw). (3.66)

For a single non-coded pulse, the MF method of detection and parameter estimation
is identical to the standard method of maximization of the range-gated power spectrum;
especially, both methods achieve coherent integration within the single pulse. But the
MF method is more general as a tool for implementing coherent integration, for a large
variety of radar experiments.

Both methods achieve correct coherent integration of Doppler-shifted signals within a
single T/R period. But we cannot use the range-gated power spectrum method unmodi-
fied to integrate coherently over multiple T/R periods, if the signal has non-zero Doppler-
shift. There is no degree-of-freedom to take into account the unequal phase factors
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ewpmTrep that would appear in the Fourier-transforms. Those time-independent phase
factors are not a problem for non-coherent integration, though, and the range-gated
power-spectra computed from individual pulses can be integrated. Pulse-to-pulse coher-
ent integration is built-in into the MF method. Essentially, the troublesome Doppler
phase factors are removed by a the correctly matching model function—the one that
maximizes the MF—so that only signal with zero Doppler-shift remains to be integrated.

Coherent pulse-to-pulse integration of M pulses increases the effective signal-to-noise
ratio by the factor M over the single pulse case (whether that case is handled by the
MF method or the range-gated power spectrum method), while the non-coherent pulse-
to-pulse integration by the power-spectrum method does not increase the signal-to-noise
ratio, but improves the detection by reducing the variance in the integrated spectrum
G(R,w). On the other hand, the MF method requires that the signal model stays ac-
curate over most of the integration time. It is obviously easier to keep a signal model
accurate for a shorter time than for a longer, so a combination of pulse-to-pulse coher-
ent integration and non-coherent integration seems a good way to increase detection
sensitivity.

The effect of not having a correct signal model in coherent integration can be studied
quantitatively using the ambiguity function. Figure 3.5 shows how much the peak value
of the AF is reduced from the ideal, fully coherently integrated value if the acceleration
used in the model signal is not correct. For instance, the top panel shows the situation
when the integration time is 300 ms. In the panel, we plot three velocity ambiguity
functions, shown by the grey, red, and blue curves. By velocity ambiguity function we
refer to the velocity slice v — AF(Ry,vo, ap; R,v,a) of the three-parameter AF. The
constants Ry, vp and ag are the actual target parameters, the variables R, v and a are
the parameters of the model function. In the velocity slice, we take R = Ry and take a
to be a constant that differs by the indicated amount from aqg.

To compute the AF, we use the standard approximation for the model functions,

X(R,v,a;t) = x(t — 2R/c)e"°"te"°‘t2 (3.67)

where w = —QW)\L/Q and a = —WAL/Q. We assume single-frequency EISCAT tau2 trans-
mission with unit magnitude, |z(t)| = 1, and wavelength \. With Eq. (3.67), the AF in

continuous-time version is then

AF(Ro, vo, ag; Ro,v,a) = lxo. )] (3.68)

I
I
= — [ dt|z(t-

As is also indicated in the Fig. 3.5, the AF depends only on the differences a — ag and
v — v in this case.

In the single-frequency tau2 transmission, the pulse length is 576 us and the interpulse
period P is 5580 pus. The distance Av between the main peaks of the ambiguity function
corresponds to the pulse repetition frequency, Av = (A\/2)(1/P) = 28.9 ms~! in this
case. The ambiguity function has its absolute maximum at v — vg = 0, a — ag = 0.
The figure shows also two of the side maxima, of value 0.98 and 0.93 times the absolute
maximum. In the presence of noise, there is the possibility that the MF gets distorted
(as compared to the AF) so that the maximum shifts to the wrong position, by an integer
multiple of Awv. This is the Doppler part of the range-Doppler ambiguity.

LRO) |261'(wo—w)f:ei(Ozo—a)t2 .
C
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AF / AFO
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Figure 3.5.:
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Effect of an acceleration error to the signal amplitude estimate. The plotted
quantity is the ambiguity function v — AF(ag,vo; a,v; 1), normalized by
AFy = AF(ap, vo; ap,vo;0.1s). We assume here tau2 transmission patterns,
but have set the two tau2 frequencies to the same value. The top panel
shows that with 0.3 s integration T, if the radial acceleration a used in the
integration differs by 10 ms~2 from the actual acceleration ag, almost 50%
of the signal amplitude is lost; in fact, the signal amplitude is less than what
it would be with only 0.1 s integration. Note that in the top and middle
panels the best matching velocity, v = max, AF, has shifted slightly towards
negative values from the correct value ¥ = vg, to partially compensate for
the wrong value of the acceleration. This shows the non-surprising fact
that in the MF method, acceleration and velocity cannot be determined
independently of each other.
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It is not important for our final results, but it is still interesting to note how this
distortion actually shows up. The initial intuition when seeing a noise-free plot like
Fig. 3.5, which consists of almost equal-sized peaks, might be that when noise enters the
picture, it would directly and randomly add to the spikes, and so a wrong maximum
could be selected when the MF maximum is sought for. In fact, this is not what happens
(until the noise comes quite large). One must remember that the figure shows the signal
spectrum, not the time-domain signal; then it is not a priori so clear how the noise
should affect the curves. What happens is more as if the whole spectrum, while keeping
its original smooth shape, would shift by an integer number of Av. When there is noise,
those MF which are in the “correct place”, do not look any smoother or “AF-like” than
those MF that are shifted by n x Awv. Of course, this only underlines the fact that the
Doppler-ambiguity is a real ambiguity that reflects real loss of information, caused by
pulsing the radar transmission in a (too) regular way.

What is more important for sensitivity is how much a wrongly assigned acceleration
parameter affects the maximum amplitude. (Remember that we do not perform a search
over acceleration values, but use a deterministic, range-dependent guess, appropriate for
circular orbits and vertical antenna pointing.) All curves in Fig. 3.5 are normalized by
a the velocity slice that corresponds to 0.1 s integration time and no acceleration error.
The maximum value equals to the square root of the total signal energy, and (hence)
increases as v/T.. For example, the main maximum of the T, = 0.3s-curve is 1.7 times
larger than the the main maximum of the T, = 0.1s curve. The red and blue curves show
how much sensitivity is lost if the acceleration is not correct. With 0.1 s integration, a
small error such as 10 ms~2 does not matter. But with 0.3 s integration, almost 50% of
the peak amplitude is lost if acceleration is wrong by 10 ms™2.

The effect of the acceleration error to the peak amplitude is illustrated in even more
detail in Fig. 3.6. There we plot the acceleration ambiguity function, that is, the slice

a — AF(Ro, vo, ag; Ro, vo, a) (3.69)

for four different lengths of the coherent integration, ranging from 0.1 s to 0.5 s. The
slices are computed from Eq. (3.68) by setting Ry = 0 and w = wgy. According to
Fig. 3.6, a 10 ms~2 error would cause the amplitude to drop down to a mere 20% of
the fully coherent value, while according to Fig. 3.5, the drop is only to about 50% of
the ideal case. Figure 3.5 is the more relevant one, for there we allow both the model
velocity and the acceleration to vary when searching for the AF maximum. As is seen
in Fig. 3.5, if there is an error in the acceleration parameter, say a > ag, then the AF
maximum does not occur at the actual target velocity vy, but at a somewhat smaller
value, v — vg < 0. This is to be expected, for then the average velocity of the model
signal will be more correct during the integration, and therefore a better overall match
results. Figure 3.6 can be used also for analysis design, for it shows that if one wants
to determine acceleration with an accuracy of about 1 ms™2, one must use integration
time of the order of 0.5 s at least.

The ambiguity functions shown in Fig. 3.5 and 3.6 are helpful in gaining insight into
the properties of the MF method, but one should not make too strong conclusions based
on them alone. One must remember that for real data there are other factors beside the
acceleration error that will affect the coherent integration, for examples, the presence
of multiple frequencies in the transmission (this case is handled in chapter 3.8). A
conclusion we can safely draw from figures such as Fig. 3.5 and Fig. 3.6 is that the
length of coherent integration in the analysis phase should be kept quite short, perhaps
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a—ag (M s72)

Figure 3.6.: Loss of integrated amplitude due to acceleration error. The figure shows
the acceleration ambiguity function a — AF(ag; a) for four integration times.
All the AF are normalized by their maximum value. We assume that the
range and the velocity are fixed to the target values. The figure suggests
that, for example, with 0.3 s integration a 2 ms™2
would cost us almost 50% of the amplitude. In reality the situation is not
quite that bad, but nevertheless, a short integration time like 0.1 s might be
preferable, at least in the parameter estimation phase.

error in acceleration

as short as 0.1 s, in order not to distort the amplitude estimates too much. (For detection
phase we seem to gain sensitivity from longer integration, up to about 0.3 s integration
time.) A 0.1 s integration time would still mean integration over 10-20 pulses in typical
experiments, and ought to be a definite improvement over non-coherent integration.

3.7. The fast match function algorithm

Since spring 2001 we have used the fast match function algorithm, FMF, for all our prac-
tical target detection computations. We showed in the final report of our previous study
that in practice we do not lose much accuracy even if we use the FMF also for parameter
estimation, at least when the estimates can be done by fitting to multiple points of time
series data (things might be different if we only had a single point available—as for the
weakest signal we might have.) By using the FMF, which is about 300 times faster than
the MF in a typical situation, we can easily achieve real-time speed for the overall data
processing. We now have enough computing power, albeit just barely, and only when
using less-than-maximal sampling rates, and by using two dedicated G5’s in parallel, to
do parameter estimation on the detected events in real time also using the standard MF.
We have analysed, off-line, all our data from the present study both with the MF and
FMF, and a comparison of the results confirms the conclusion from the previous study.

In this chapter, we will document some of the emerging understanding of the properties
of the FMF and the FAF. From the look of the data processed with the FMF and MF
algorithm, it is evident that there are conspicuous and pertinent differences between
the two functions. (Perhaps one should think the FMF as an transformation of its own
right, rather than just an “approximation” of the MF). Typical differences are shown,
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Figure 3.7.: Typical Doppler-velocity behaviour during a beam passage under very high
SNR conditions. The experiment is taul. For the top panel, analysis was
done using FMF, for the bottom panel, using MF. The fitted lines are vp =
2.90kms™' +50ms~2 x (t —tg) and vp = 2.89kms™ +45ms~? x (t — tg)
for the top and bottom panel, respectively. The conspicuous feature is the
non-physical, staircase-like change in the FMF data. For instance, the jump
between the 4th and 5th point in the top panel is 74 ms~'. The integration
time is 0.3 s for each point. The time instant ¢g is 7-Sep-2004, 21:12:47.4 UT,
the EISCAT Tromsg UHF antenna was pointed to azimuth 133.3° and ele-
vation 61.6°.

for high-SNR taul-data, in Fig. 3.7 and in Figures 3.8 and 3.9.

The prominent difference between MF and FMF is in the spectral shape, that is,
in the shape of the velocity slices. In parameter estimation, that difference shows up
in large unphysical jumps in the vp(t) FMF data. In fact, as shown in the top panel
of Fig. 3.8, the apparent velocity can even decrease for a while although the physical
radial acceleration is an all cases positive, and fairly large (at least for circular orbits).
The decrease is not due to noise, but is a property of the FMF. How such systematic
discrete jumps can arise in our presumably smooth data is illustrated in Fig. 3.8. The
essential feature is that when the target velocity changes, the FMF does not merely shift
by that amount, but also its detailed shape changes. The situation is analogous to the
difference between group and phase velocity in wave propagation (but now in velocity
space), so that even though in the mean the overall pattern, and thus any particular
peak, shifts with the correct target acceleration, there is an embedded “modulation” that
moves along the overall pattern by changing the relative heights of the local maxima.
This causes the observed maximum to move with an acceleration that is different from
the target acceleration (and which can even be negative), and also every now and then
causes the absolute maximum to jump from a peak to the next. The typical size of the
jump is roughly the distance between the main peaks of the FMF. It can be shown,
by an argument similar to that leading to Eq. (3.82), but applied to the two-frequency
case instead of a single-frequency case, that this distance in the taul and tau2 EISCAT
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Figure 3.8.:
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Anatomy of velocity jumps when using the FMF algorithm. The figure
shows FMF velocity slices v — FMF(R,v) from three consecutive 0.31 s
integration. The integrations correspond to the 7th, 8th, and 9th point
in the top panel of Fig. 3.7. The data are from the outgoing edge of a
target’s passage through the beam main lobe, so the overall signal amplitude
is rapidly decreasing. The target’s radial acceleration is 45 ms~—2, which
would give velocity step of 15 ms™! from panel to panel. Instead, what
is observed is a slight decrease from the top panel to the middle panel,
and then a jump of 84 ms~! from the middle panel to the bottom panel,
when the FMF maximum jumps from the main peak at 2.9kms™! to the
next main peak at 3kms~!. The distance between the FMF main peaks
is (\/2)/(2L) = 84ms~! in this two-frequency taul data where the pulse
length L is 960 us. Although there is a lot of structure in the curves, almost
all of it is a genuine property of the FAF. The effect of noise is insignificant in
these data, for even in the bottom panel the SNRy is still about 372 = 1400.
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Anatomy of velocity jumps when using the MF algorithm. The panels
show the MF velocity slice v — MF(R,v) in four consecutive 0.31 s inte-
gration. The target’s radial acceleration is 45 ms~2, so we would expect
the MF maximum position to shift by about 15 ms™! from panel to panel.
But due to the inherent velocity ambiguity of n x 7.2ms™!, the maximum
may be found displaced from the expected position by that amount. For
example, the “correct” maximum position in the third panel would be not
2.945kms™!, but rather the position of the next peak, 2.952 kms™?.
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experiments is

A1
221’
where A is the radar wave length (0.32 m) and L is the length of a single transmitted
pulse, so that Avp is 84 ms™! in taul and 140ms~! in tau2.

There are jumps also in MF velocity data, even with very high SNR, as shown in the
bottom panel of Fig. 3.7. However, these are smaller than the main jumps in the FMF
data, and have different origin. The jumps are due to the inherent velocity ambiguity
(the one that gives rise to the name ambiguity function) of pulsed Doppler radar data,
and have typical magnitude equal to a small integer times the separation of the main
peaks of the MF. For taul and tau2 the peak separation is dv = n x (\/2) x (1/Pe),
where P, is the pulse repetition period on a given frequency channel, 11160 us for tau2
and 22320 ps for taul. This gives v = n x 7.2 ms~! in taul and v = n x 14.5 ms~! in
tau2. These small jumps should occur at random times, and with positive and negative
n, so they should not bias the fitted velocity and acceleration in fits like the one shown
in Fig. 3.7.

Comparison of the FMF in Fig. 3.8 and the MF in Fig. 3.9, both computed from the
same raw data, shows that the main peaks in the FMF are much more sparsely placed
than those of the MF. The ratio of the peak separation is v/Av = L/P, that is, equals
the duty cycle of the experiment (0.086 in taul and 0.103 in tau2).

Observing and comparing the non-random jumps in vp(¢) in MF and FMF analysis is
not the best way to find out an experiment’s duty cycle, but there is another aspect here
that deserves to be inspected. In the context of the classical range-Doppler dilemma, it
makes sense that with a given pulse length, the velocity is the less ambiguous the further
the MF peaks are from each other. In terms of the MF, this comes about because the
envelope curve of the MF peaks is diric(w — wo, L), where the Dirichlet kernel® is

A’UD (370)

: M
S1n .’L‘?

diric(z, M) = Gz | (3.71)
2

so that the side peaks will be the smaller compared to the main peak the larger the
peak separation is. Does the dependency of the size of the velocity ambiguity on the
peak separation now imply that the FMF method, with its large separation of the main
spectral peaks, somehow manages to reduce the ambiguity compared to the MF. Not so;
the velocity ambiguity with the FMF is the same as with the MF, n x 1/P, determined
by the pulse repetition rate 1/P. Figure 3.10 shows how this comes about. Consider
the top and bottom panels of the right-hand-side column in Fig. 3.10. The two panels
show a FAF frequency slice, and look pretty much the same. Especially, the main peak
is in the same position in the two cases, so the FMF algorithm will give the same
Doppler-frequency. Nevertheless, the actual target Doppler-frequency differs by 1/P in
the two panels. When noise is added into the picture, there is a real danger that the
two situations will be confused. Unless we know a priori on what particular interval of
length 1/P the velocity is, in the presence of noise we cannot invert the observed peak
location to find the actual target velocity. (If there is no noise, we can always invert the
FAF to find its parameters; this, of course, applies to the MF also.) So, we have to live
with the usual Doppler ambiguity here also. The center panel shows an intermediate

6 Note that we include taking the absolute value into the definition of the diric function. This is not
normally done.
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Figure 3.10.: Mechanism of the n X % Doppler-frequency ambiguity in the FMF al-

gorithm. We assume pulse length L = 100 samples, interpulse period
P = 1000 samples, coherent integration over M = 10 pulses. The target’s
Doppler-frequency wg in the top panel is wg = ugws, where ug = 0.023
and ws = 27—: is the normalized sampling frequency. In the middle panel
wo = upws + 0.5%, and in the bottom panel wy = ugws + F. The left-
hand-side columns show the composition of the function w — FAF(w0;w)
to a product of two factors. The blue curve is diric((wg — w)7s, L), the
gray curve is diric((Pwy — Lw)7s, M). The maximum of the blue curve
is at wp; its shift to the right is traced by the short vertical lines in the
right-hand-side panels. When wy increases, the grey curve shifts P/L times
faster to the right than the blue curve. When wy has increased by ]_?,—;L, the
grey curve has shifted by precisely 2%, the interval between its main peaks.
Meanwhile, the blue curve has shifted only very little. Therefore, the two
values of wy, differing by ]%—ZS, give almost identical overall shape of the
FMF, and produce essentially identical position for the FMF maximum.
This is the Doppler ambiguity.
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situation, where the target’s actual Doppler-shift is halfway between the top and the
bottom cases, while the left-hand-side panels show how the FAF is constructed as a
product of two factors in accordance of Eq. (3.80). For the specific parameter values
used in this example, refer to the figure’s caption.

We now describe the FMF algorithm, originally introduced my M Lehtinen in an
internal unpublished note, April 2001, but never earlier described in the project docu-
mentation.

The FMF algorithm was designed originally as an approximation to the well-known—
though we did not know at the time that is was so well-known—radar ambiguity function,
generalized to our case by including target acceleration. It was the explicit purpose to
use the FMF for target detection purposes only, so it was designed to give a good approx-
imation of the ambiguity function near its absolute maximum position. Especially, it was
important that the FMF would achieve coherent integration to a good approximation.

We make use of two special properties of our measuring situation in EISCAT: the
property that we are using a pulsed radar; and the property that the space debris
receiver “oversamples” the debris signal heavily. The quotes are needed, for the high
sampling rate is necessary to correctly sample the multi-frequency transmission. But
we are oversampling with respect to the Doppler-shifted, inherently narrow-band signal
on any given frequency channel. The time consuming phase in the MF evaluation is to
compute the velocity slices, that is, the power spectra for a set of range gates. We make
use of the two properties to drastically reduce the length of the FFT input vectors.

First, we note that the Doppler-velocity interval that we need to monitor is much
narrower than the interval that is actually available with the high sampling rates f, that
we use in the SD receiver. For the 930 MHz radar frequency (0.32 m wavelength), the
benchmark 2 MHz sampling gives unambiguous velocities in the interval +(f5/2)-(A/2) =
+160 kms~!. Typically, for near-vertical pointing, it suffices to monitor velocity interval
+5 kms~!. Therefore, for each range gate j, we can downsample (decimate) the to-be-
Fourier-transformed vector w, which according to Eq. (3.40) is formed from transmission
samples x,,, signal samples z,, and an acceleration correction term exp(—iaan),

Wy, = z,@n,je_mj”2 , (3.72)

by a factor Mgec, which is 160/5 = 32 for 2 MHz sampling, and 8 for the more typical
0.5 MHz sampling. This we do by forming a new sequence w,, by adding wy,’s in blocks
of Mge.. At the same time, we make use of the fact that within such a block, the
acceleration factor is almost constant. For each block we use the average phase ¢’ within
the block and take exp(—i¢’) out of the decimation sum. This reduces both the number
of multiplications and the number of complex exponentials that need to be evaluated.
Second, we make use of the fact that most of the elements of w are zeros, in known
locations (formally, the terms z,, are zeros in most places). When we form v’ from w,
we only compute and decimate explicitly the products (3.72) at the points where we
know there can be non-zero data. The transmission duty cycle in EISCAT experiments
is about 10% in the UHF and about 20% at ESR. Therefore, about 80-90% of the
elements of w are zeros, in regularly placed blocks. We now simply concatenate the
non-zero blocks of w’. We get a vector w”, which typically is two orders of magnitude
shorter than the original FFT input vector w. For example, in the benchmark case with
600,000 point raw data input vector, using decimation factor 15 as we normally do, w”
has the length N” = (1/15) - 0.1 - 600,000 = 4000. Finally, we Fourier-transform and
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Figure 3.11.: Forming the Fourier-transform input vector for a given range gate in the
FMF algorithm. For each of M IPP’s (M=3 in the figure), one first forms
the point-wise product w of the reception z and the shifted, complex-
conjugated transmission Z. Next, for each IPP, w is decimated, and the
decimated vector multiplied by an appropriate mean acceleration correc-
tion factor to get the vector w’. Finally, the w’-vectors from the IPPs are
concatenated to form the input vector w”.

normalize w” to get the FMF at range gate R; and Doppler-frequency w,

FMF (R;,w) =

(3.73)

By restricting w to the points wy = 2wk/(N"75), the FMF can be evaluated using FFT.
This is the fast match function algorithm. Due to the much shorter FFT input vector,
even allowing for the extra computations needed in decimation, the FMF is 100-300
times faster than the MF in typical cases. The computation of the FFT input vector w”
in Eq. (3.73) is summarized in Fig. 3.11.

Gaining speed by the FMF algorithm is not in doubt. But what is the price? Decima-
tion, the first step in the algorithm, does not lose us much information. Basically, we are
just backtracking from the initial oversampling. We can backtrack at this stage, because
the signal w has already been demodulated. Reception is multiplied by the complex
conjugate of the transmission, so the carriers cancel out. Very near to the MF maxi-
mum also a possible transmission phase modulation is cancelled out. So the sampling
requirement of w is determined by the size of the maximum anticipated Doppler-shift
only.

We now inspect the second step. Remembering our worry in section 3.6 concerning the
difficult-to-control phase shifts in pulse-to-pulse coherent integration, we might expect
trouble here where we have concatenated data blocks by dropping the zero-segments
between the pulses. One might expect that the phase jumps caused by deleting segments
of data before taking the FFT would mean that the FF'T phase factor, which should
cancel the Doppler-phase factor from the signal, cannot continue to do so from pulse
to pulse. So it perhaps comes as a surprise that the damage keeps limited, and the

47



3. Theory

sensitivity stays above a lower limit that does not depend on the experiment. Perhaps
there is some simple way to see how and why the lower bound really comes about; but
here we will proceed with a direct evaluation of Eq. (3.73) in a relevant special case.

What effect does disregarding the zero-blocks have to the Fourier transform? We
ignore the decimation step, taking Mgy, = 1. We are interested in the behaviour of the
MF near its maximum. Thus, we will assume that the correct range and acceleration
have already been found, and only a Doppler-term ™0™ in w still needs to be cancelled
(matched). We ignore noise, so we really are computing the FAF here.

We assume that the transmission consists of M pulses of length L samples each, sent P
samples apart. Then, near the maximum, w consists of M pulses of, say, unit amplitude
and L samples each, Doppler-shifted by the normalized frequency wg, with P — L zeros
between each pair of pulses. The non-zero part of w consists of M blocks, and in the
m’th block, w has elements

w7(lm) _ eiwo(n-ﬁ-mP)’ n=20,....,L—1. (3.74)

For computing FAF(w) the blocks {wgm)} are first concatenated and then the result is
multiplied by e=®". The m’th block gets multiplied by

ul™ = e=wtml) p — o L—1. (3.75)

The contribution I, of the mth block to the inner product in the denominator of
Eq. (3.73) is

L—-1
Iy =Y wi™ ul™ (3.76)
n=0

The norm ||z|| in the nominator of Eq. (3.73) is the sum of M L terms, all equal to unity,
so we get from Eq. (3.73) and (3.76)—(3.74)

1 M-1
FAF(w) = - > In (3.77)
m=0
_ ﬁ Z Z eiwg(n-l—mP)e—iw(n—i-mL) (378)
_ l Lz_:lei(wo—w)n i ]Wz_:l ez’(woP—wL)m (3 79)
L n=0 M m=0 ‘
= diric(wy — w, L) - diric(woP — wL, M), (3.80)

The Dirichlet kernel diric was defined in Eq. (3.71).
For comparison, we mention without derivation that the standard single-channel AF
has an expression where the last “L” in Eq. (3.80) is replaced by a “P”,

AF(wp;w) = diric(wp — w, L) - diric ((wg — w) P, M) , (3.81)

See Fig. 3.12 and Fig. 3.10 for illustrations of Eq. (3.80). The first factor in Eq. (3.80)
encodes the Doppler-information available from a single pulse. The factor has its absolute
maximum at the target Doppler-frequency wy, and first zeros at wy = wy + 27/L. The
second factor in Eq. (3.80) results from pulse repetition. It has maxima, equal to unity,

at the points
P 27
Wn = TWo + n- (3.82)
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In general, none of the maxima w,, coincides with wy. Therefore, the maximum of FAF(w)
is not situated in the correct place wg, even when there is no noise. This means that the
estimated velocity will be biased. This is not serious. The bias is rather small, less than
0.2 kms™! in our typical measurement modes. For some values of the target velocity,
the bias vanishes, as shown in Fig. 3.12.

What is more worrisome for target detection, is the loss of maximum integrated am-
plitude. The maximum value of the FAF occurs (very near) that w,, which is nearest to
wp. Such an wy,, according to Eq. (3.82), is never further away from wy than half the
spacing 27 /L between the wy’s. Therefore, the FAF maximum value, in the worst case,
is roughly equal to diric(n/L, L) ~ 2/m, or about 64% of the ideal value.

We must also remember that when we use FFT, and can only evaluate FAF (and
MF) at the discrete set of points wy, the worst-case maximum value can get worse by an
additional factor of 0.6 due to the “picket-fence” effect. On the other hand, we normally
can observe a target for several seconds, and during that time, its velocity, hence wy,
typically changes so much that during some integration, the maximum gets nearer to
the ideal value.

3.8. Ambiguity functions in dual-frequency experiments

Our discussion up to now has been mostly concerned with single-frequency-channel ex-
periments. However, the standard EISCAT experiments taul and tau2 use two frequency
channels. The particular frequencies used are subject to change without warning by
EISCAT, but so far in all our SD experiments the frequencies have been the frequencies
F13 and F14, 929.9 MHz and 930.2 MHz. In the derivation of the MF method, we
mentioned that the method in principle applies unmodified to all transmissions. But
we also said that for numerical efficiency, we had to apply approximations to the signal
model. These approximations led to the standard signal model functions y of Eq. (3.33).
Both the AF and the FAF have so far been expressed using these approximative model
functions. The approximation is good for single-channel data. But for our actual two-
channel data the approximation breaks down, the worse the larger the target velocity is,
and the longer the integration time we use. The break-down of the signal model causes
the estimated signal amplitude to fall below the ideal, “fully coherently integrated”,
value. This causes some loss of detection sensitivity. The bad news is that already with
our standard 300 ms integration time, for targets with Doppler-velocities larger than
about 2 kms~!, we are only just marginally more sensitive than if we were making use
only of a single channel’s data. The good news is that this is about as bad as things will
get; the sensitivity will not fall below the single-channel sensitivity.

With N, narrowband channels in the transmission, but with only a single channel
being transmitted or received at any given instant of time, the proper signal model would
be a sum of the single-channel models of Eq. (3.33),

Nch 2R
.0 D D42
X(Ryv,a;t) =yt — =) Wt t?) (3.83)
=1

where x;(t) is the transmission sample signal on channel [, and the channel’s Doppler-
shift and Doppler-drift are related to the target’s radial velocity v, radial acceleration a,
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Figure 3.12.: Structure of the FAF in single-frequency case. The panels show the velocity
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slice v — FAF(vg, v) for a single-frequency tau2 transmission scheme, with
different values of the target velocity vg. The length of integration is 0.1 s.
According to Eq. (3.80), the FAF (solid color) is the product of two factors,
shown here by the slowly varying dashed curve and the faster varying solid-
line curve. The dashed curve is diric(u/\vo)“, TL) where L is the pulse
length, 7 is the sampling interval, and A is the radar wavelength. The
curve is has absolute maximum at vg. The panels illustrate what happens
when vg changes from 1000 ms~! to 1016 ms~!. The solid-line curve shifts
to the right much faster than the dashed curve when vg is increased, and
therefore also the maximum of FAF shifts to right faster. The top panel
shows that with a suitable vg, in the single-frequency case it is possible to
get an ideal match with the FAF, with no sensitivity loss and with a correct
velocity estimate. The bottom panel shows the worst-case situation. The
velocity estimate is wrong by 0.136 kms™! and the amplitude estimate is
wrong by 35%.
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and channel’s carrier frequency wy, by

2
wP = —wl—v (3.84)

c

and a
aP = W (3.85)

The model (3.83) is reasonably accurate when the integration time is not too long,
and should be used in the MF algorithm for multichannel data. Then, for instance, the
multichannel velocity ambiguity function would be

[(x(Ro,v0), Xx(Ro,v))|

AF(vp;v) =

2
t—&)

ol et (wo—v)t gy (3.86)

where W is the transmission energy as usual. Note that there are no crossed terms
containing x;(¢)Ty (t) with I’ # [, because only a single transmission is received at a
time. As it should, the ambiguity function in Eq. (3.86) is at maximum at v = wvy,
equal to /Wy, the square root of the energy of x(Ro,v0). And if the model functions
(3.83) are used in the MF method to cross-correlate against a noisy measurement z(t),
we can expect the procedure to yield the correct Bayesian estimates, just as it does in
the single-frequency case.

However, for computing efficiency, we need to use FFT in the evaluation of the velocity
slices, and then we cannot use the correct model functions Eq. (3.83). Instead, we ignore
the channel structure in the data, take the vector z as a whole, and essentially compute
power spectra from the entire vector for the relevant range gates, using FFT. In effect,
instead of Eq. (3.83), we use the model functions

¢(R, v, a;t) = <§:m @Wﬁ>&wﬂ (3.87)

where some typical radar frequency like the mean wia = 0.5(w; + w2) is used to convert
between w and the model’s velocity parameter,

2
W= —wi o (3.88)
C

All processing of real multichannel data has been done using MF and FMF based on the
models &; for example, we have computed the MF from

MF:ﬁmH. (3.89)

It obviously is not possible to match in Eq. (3.89) both Doppler terms

D
twy t

WPt and e ,

e

which are present in the actual two-channel signal z, by using only the single Fourier
factor available in &,

s
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3. Theory

so some of the integrated amplitude is necessarily lost. How big the loss is can be
studied quantitatively via the ambiguity functions, where the term in the inner product
representing the target is the correct model signal x, and the other term is the simpli-
fied model function &. For example, the velocity ambiguity function corresponding to

Eq. (3.89) is
[(wo), £

v = AF(vg;v) = o]

(3.90)
An expression for the ambiguity functions in the actual two-frequency taul and tau2
experiments can be derived by adopting from the steps leading to the single-frequency
expressions Eq. (3.80) and Eq. (3.81). Not surprisingly, the ambiguity functions are now
obtained as the magnitude of the sum of two complex-valued terms, both of the general
type of diric() x diric(), but with some extra phase factors appearing. For example,
the fast velocity ambiguity function FAF (vg;v) in the two-frequency case is obtained by
computing through the following definitions (I = 1,2):

¢ = wP-2P—w-2L,

Q = w-w,

A, = ei(%—l)‘¢1~diric(¢1>%)7

; M
Ay = ez, diric(¢g, 7) ,

. L
B = LU Qivic(Qyr, =),
Ts
¢, = A B,
FAF M;FCQ‘ (3.91)

The channels’ Doppler-frequencies w? corresponding to target velocity vy are obtained

from Eq. (3.85), the w in ; corresponding to the model’s v is obtained from Eq. (3.88).
P is the interpulse period (in time units), L is the pulse length, M is the (even) number
of interpulse periods in the integration, and 75 in the expression for Bj is the sampling
interval. The ambiguity function AF is obtained similarly to Eq. (3.91), with the single
difference that the “L” in the expression of ¢; is replaced by “P”. When w? = w? ,
Eq. (3.91) reduces to the single-frequency case, Eq. (3.80).

Figure 3.13 illustrates two features of the FAF (3.91) that are due to the two-frequency
transmission. The first feature is specific to the FAF, the second applies also to AF. The
first feature is that the interval between the FMF main maxima is only half as much as in
the single frequency case. The frequency difference between the maxima is Af = 1/(2L)
instead of 1/L. In taul, 1/(2L) corresponds to velocity difference 84 ms™!; in tau2,
to 140 ms~!'. Figure 3.13 shows how a new peak grows halfway between the single-
frequency peaks when the frequency difference between the transmission frequencies is
increased from zero to 300 kHz. The fact that the local FMF maxima are separated by
1/(2L) means that there is always one such peaks within 1/(4L), and two such peeks
within 1/(2L), from the correct target velocity vg, located at the maximum of the main
lobe of width 1/2L of the term diric(w}” —w, L). A third peak is also near the maximum,
but the other peaks are more strongly suppressed. In a noisy environment this results in
the characteristic 2- or 3-peak structure near the maximum location of the velocity slices
seen in Fig. 3.4. The “extra” peak, compared to the situations that both frequencies
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would be the same, implies that the maximum velocity bias in the two-frequency FMF
algorithm is only 0.04 kms~! in taul and 0.07 kms~! in tau2. Arguably, the bias is not
the crucial factor here, for it is more the velocity ambiguity that determines the random
velocity measurement errors. With the ambiguous peaks more near to each other now,
the error distributes onto a more fain-grained grid, but its mean magnitude does not
necessarily change much. (Here is a place for a simulation study.)

Second, Fig. 3.13 illustrates the main problem caused by the dual-frequency transmis-
sion being matched with the oversimplified model functions £&. The velocity ambiguity
function is now essentially the spectrum of the combined, repeated transmission. The two
Doppler-frequencies will go to two different locations, separated by df = |fP — fP| (and
then the pair is repeated with interval A f). Due to finite integration time, the frequencies
show up as “spectral lines”, of width 2/7, (counted from zero-to-zero). When Jf be-
comes greater than about a quarter of the line width, the two peaks start become clearly
separated. When the separation increases, no matter what the phase-difference between
the complex-valued sub-spectra, represented by the terms C; and C5 in Eq. (3.91), will
be, the maximum attainable integrated amplitude will tend towards the single-frequency
level. For instance, with T, = 300 ms and with 300 kHz difference between transmission
frequencies, the condition df = (1/4)(2/T¢) gives target velocity vop = 830ms~!. And
soon after Jf exceeds 1/T¢, we expect the ambiguity function, or at least its maximum
value, to behave is if there would be two incoherent signals. The total signal energy does
not vanish anywhere, but it is then represented by two peaks, each of height /Wi /2.
The problem for our threshold-based detection is evident. Moreover, after detection, we
obviously would need to modify our standard energy estimate to account for this “loss of
coherence”. Such a correction we have not done in any of our actual data analysis yet.

In Fig. 3.14 we show the loss of the integrated amplitude as a function of target
velocity, for two integration times in the tau2 experiment. In the figure, we plot the
maximum value of FAF and AF as a function of target radial velocity. Normalization is
such that value of unity represents fully coherent integration. The maximum value for
each target velocity vy is found by computing the velocity slice FAF (vg; v) and AF (vg; v)
from Eq. (3.91), and searching its maximum value. The top panel corresponds to 100 ms
integration time, the bottom panel to 300 ms integration. It is seen that when the target
velocity increases, both the AF maximum and the FAF maximum approach the level
one half. But that level can be obtained even when one of the two frequency channels
is completely killed-off.
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Figure 3.13.: If a single-frequency experiment is changed to two-frequency experiment
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by alternating the frequency from pulse-to-pulse, the distance of the max-
ima in the FAF is halved. This series of plots of f + FAF(uvg; f) shows
how this change comes about when the frequency difference between the
channels is increased, starting from zero. The frequency axes has been
converted to velocity units by multiplying the frequency by half of the av-
erage radar wavelength. The left-hand-side panels show the magnitude of
the two complex-valued terms, C1 and C3 in Eq. (3.91), shown in blue and
cyan curves, which are summed to form the FAF, shown in the right-hand-
side panels. The dashed curve is diric(wy — w, L). The top panels show
the single-frequency case, the bottom panels the actual case in the tau2
experiment. Integration time is 300 ms, target velocity is 1.500 kms?
With these parameters, the two Doppler-frequencies in the bottom panel
are separated by 3.0Hz, while the FMF peak’s width, counted from zero
to zero, is 2/(300ms) = 6.7 Hz. Therefore, the maxima of C; and Cy are
becoming well-separated. This reduces the maximum possible value of the
FMF from 1 to about 0.7.
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Failure of coherent integration in standard (dual-frequency) tau2 measure-
ments. The curves show the maximum value of the FAF (fast oscillating
dark coloured curve) and the AF (slowly oscillating envelope curve, with
larger line width) as a function of the target’s radial velocity vg. Normaliza-
tion is such that unity represents fully coherent integration. The top panel
corresponds to 100 ms integration time, the bottom panel to 300 ms. With
increasing target velocity, both max AF and max FAF approach the single-
channel level. The single-channel case is shown with the lightly coloured
curves at the near-constant value of about one-half; for that data, the
value 0.5 represents fully coherent integration. The single-channel curves
were computed by setting one of the two frequency channels in the tau2
transmission pattern equal to zero.
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4.1. Overview

An overview of the real-time SD data processing software is shown in Fig. 4.1; recall
also Fig. 2.1 on p. 19. The system consists of four main processing units and an overall
control system.

The SD receiver board’s firmware delivers baseband complex samples to an onboard
FIFO, which is also visible in the memory space of the measurement computer.

The recorder program GUMP, provided by the hardware vendor, reads the data from
the FIFO and dumps them to disk files. The disk, typically an external 250 GByte
FireWire disk, is network-mounted from the analysis computer to the measurement
computer. The data are organized into directories which we call the stream directories,
or just the streams. Typically, one stream contains 60 minutes of uninterrupted sample
data, in time-stamp labeled files, each containing one million complex points.

The streams are processed, one stream at a time, by the scanner program DSCAN. Two
DSCAN processes can be running simultaneously in the two-processor analysis computer,
nearly doubling the processing speed. The scanner reads a segment of raw data from
a stream and searches through the segment for hard targets using the FMF algorithm.
When a pre-determined detection threshold is exceeded, we say we have a hit. The scan-
ner saves the hit’s description to a file and proceeds to the next data segment. Scanning
is by far the most time-consuming step in our standard data analysis. Therefore, DSCAN
is implemented as a C program that makes use of the AltiVec vector processor onboard
the G5 measurement computer, by calling routines in Apple’s DSP library (vdsp). The
scanner performance depends strongly on the length of the input data vector. For our
most common measurement configurations, we get a little over 2 GFlops per processor.

The next program in the processing chain, the event archiver DARC, inspects the
stream’s list of hits, trying to combine to an event the hits that correspond to a single
target passing through the radar beam. Having determined the time boundaries of
the event, the archiver copies the raw data belonging to the event to a separate event
directory, and goes looking for more events. The event archiver is also a C program, but
it is not performance critical. Most of its time goes to data copying, so its speed is mainly
limited by disk speed. We have saved all raw data from most of our test measurement
campaigns so far—somewhat less than a terabyte—but in routine measurements, at
most the raw data of events will be saved. With the event rates observed in the test
measurements, saving all events from all the ~400 hours of space debris measurements
that we anticipate to be able to do annually, would require (only) about a terabyte of
storage per year.

As the last processing step, the analyser program DANALYSER picks a stream’s events
from the event directories and deduces and saves the event parameters. The way to
compute the final target parameters is still under development. What the analyser
now does is basically to call DSCAN to re-scan the data using FMF or MF, but with a
maximum time and range resolution over a narrow range interval, and then make linear
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Figure 4.1.: Main modules of our real-time SD data processing software.
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Figure 4.2.: Data processing software’s performance under benchmark load. The fig-
ure shows the time required by the scanner, archiver, and analyzer, running
on the analysis computer, to handle 60 minutes of data, composed of two
30 minutes streams on a disk. During the test, new data was being trans-
ferred with the benchmark rate of 26.8 GBytes h™! from the measurement
computer to the analysis computer. The two streams were processes in par-
allel by the two processors of the G5 workstation, and both required about
35.5 4+ 3 + 6 = 45 minutes to complete.

or quadratic fits to the range and Doppler-velocity time series. The range and velocity
parameters that we normally quote are taken from these fits, for the time instant of
maximum signal strength. The analyser is a Matlab program.

The combined processing speed is such that for data taken with the 2 MHz benchmark
sampling rate, it takes 40-45 minutes to scan, archive and analyse one hour of raw data,
while keeping the raw data access running at the same time, see Fig. 4.2. Then we need
to make use of both CPU’s in the analysis computer. For our more typical 500 kHz
sampling rate, we need about 20 minutes to handle one hour, and then we use only a
single DSCAN for the scanning.

The four processing blocks are independent programs that are run as independent,
stand-alone UNIX timesharing processes, which do their specific job once and then die.
The processes themselves do not know anything about each other. The processing chain
is created and organized by software we call DROS. The name is a twisted form of “EROS”,
and is meant to indicate that the DROS system is a slightly tailored copy of the standard
EISCAT real-time radar operating system of that name. Based on an experiment-specific
configuration file and a given start time, the DROS system generates the required input
files and command line parameters for the processing modules, starts and restarts the
processes in the two computers as required, and maintains and logs state information.
The DROS system can query the running EROS at the host radar to find antenna pointing
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Figure 4.3.: The SD scanner program DSCAN.

direction and transmission power information directly from the official source. We now
describe the processing blocks in more detail.

4.2. Scanner

The task of the space debris scanner program DSCAN (Fig. 4.3) is to read raw data,
the complex samples, from disk, to inspect them for targets using the MF or FMF
algorithms, and to save to file information about the location of the target-containing
data, together with initial estimates of the target parameters. We call the process of
looking the raw data for targets scanning.

4.2.1. Scandef file and hitlist file

We introduce some further terminology. The MF algorithm is applied to a segment
of raw data at a time. The time length of the segment is the integration time, T¢.
Processing one such segment is a scan. Typically, we use 1. =~ 0.3 s, and then the input
data vector consists of several hundred thousand complex samples. The operation of
the DSCAN program is configured in a scan definition file, for which we use the file name
extension .sdef.

When the threshold detector of DSCAN triggers, we say we have a hit. The collection
of hits caused by a single target going through the radar beam is an event. When a
hit occurs, DSCAN both outputs to screen and records to a file an initial estimate of the
range and velocity of the target, as well as the value of the MF maximum. In addition,
DSCAN also records the stream position of the data segment that contains the hit. The
file, into which the hits are recorded, is the hitlist file. It has the extension .hlist. The
hitlist file also inherits a complete copy of the currently active scan definition file.
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4.2.2. G-streams

The raw data, produced by the SD data acquisition system, are in binary files as
16+16 bit complex integers, 1,000,000 points per file. The files are named like xxx_00000,
xxx_00001, and so on, by the GUMP recorder program. We call this set of equally sized
files of uninterrupted sample data a stream. It is required that no samples are missing,
and that there are no extra samples. Especially, if for any reason the data access is
stopped and then restarted, always a new stream is created, with different xxx, and
again starting from file number 00000.

We have written a set of interfacing C routines to mask out the file boundaries in a
stream, so that the calling C program like DSCAN sees only a single, long data vector, and
can conveniently access any part of it. The interface routines have names reminiscent
of the streams routines in the standard C library, but with the letter ‘g’ prefixed to the
name. We have GOPEN, GSEEK, GREAD, GCLOSE, and some others.

An addition to the g-streams compared to the standard C language streams is that
a g-stream has, conceptually, a time stamp associated with every sample, so that the
calling program can get the time instant of any piece of data, with a nominal microsecond
accuracy. The time information is inserted into the stream as a required parameter when
the stream is created, in the GOPEN call. DSCAN gets the time information either directly
from the scandef file, or, normally, the scandef file provides a pointer to the time-stamp
file that GUMP creates when it starts a new stream. A stream is the basic unit in our
data processing. A single call of DSCAN processes one stream.

Another addition of convenience is that the GREAD routine performs transparent con-
version from the raw 16+16 bit complex integer format, where every other 16-bit quantity
is the real part and every other the imaginary part, to floating-point split-complex for-
mat, where the real part and the imaginary parts go to two separate vectors as 32-bit
floats. This format is required in order to be able to use vectorized library routines in
the Apple’s signal processing library.

4.2.3. The DSCAN program

We now describe in detail the space debris scanner main program. The numbers in
the left margin in this section refer to the DSCAN main program listing in appendix B
on p. 111.

1 DSCAN is a normal UNIX command-line program. Like many UNIX programs, it
requires command line parameters and supports some options. The present version
supports the options shown in the DSCAN online-help message in Table 4.1, printed
out by the command ‘dscan -H’.

2 DSCAN operation is controlled by a scandef file, which is a required parameter when
DSCAN is invoked. An example of a scandef file is shown in Table 4.2. The example
is the template file, /deb/kst/debris/sdef/tau2-2000.sdef, which the DROS system
uses to generate scandef files for tau2 experiment, by modifying the ‘$name’, ‘filel’
and ‘timel’ entries to point to actual places in the filesystem.

The scandef file consists of lines having a keyword and a value, and any number of
empty and comment (%) lines. The value can also be a Matlab-format vector, but
one should not attempt to insert anything fancy there. Some explanations about
the various entries follows.
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Table 4.1.: DSCAN usage and options.

Usage: dscan_mat [-options] ScandefFile
-H : Print this help message

-R : Save a cycle of Raw data for hit scans
-RR: Save a cycle of Raw data for all scans
-S : Save Ratio(r) for hit scans

-8S: Save Ratio(r) for all scans
-T : Test mode (no hitlist written)

-V : Save peak V-slice for hit scans
-VV: Save peak V-slice for all scans
-a : Syncronize to iper boundary
-c : Check sync in every scan
-i : Request confirmation before starting scanning
-t : Detailed performance timing
-N nscans : Set maximum number of scans
-o dirname : Output directory for hitlist and .mat files
-n name : Set and/or override $name in sdef file

The scandef file contains some information about the EISCAT experiment, like the
locations of transmission samples (entries IPPlen, TXon, TXlen), and the length
of EISCAT radar cycling period and the size of a possible idle time at the end of
the period (gapsize, iperlen). These numbers are in terms of samples, not, say,
microseconds. The scandef file contains pointer to the begin of the stream to
be scanned (filel). Further, there is the time instant as a six-component Matlab
vector (yyyy, ... ,sec), or, as here, name of the file where the time instant can be
read (timel).

There is information to actually control the scanner. The entry “ncycles” deter-
mines the length of coherent integration, the entry “nskipcycles” determines how
much data to skip over after an integration before starting next integration. A
cycle is a subunit of the full EISCAT radar period. It consists of an integer num-
ber of transmission-reception periods or IPPs. The length of the IPPs can vary in
a radar period, but a cycle has a constant length, and is thus better suitable for
address counting. For example, some old versions of the tau2 experiment, which
we had to work with, used two different lengths of IPPs, 6516 us and 6504 us. In
principle the cycle structure can be deciphered from the transmission ON/OFF
bit included in the stream data, but in practice we have extracted IPPlen and
TXlen by studying EISCAT experiment definition files. The entry “shift” defines
the range gates to be scanned. The set of shifts need not be uniformly spaced.
The entry “noiseshift” defines which part of the received data should be used to
perform background noise estimate. We want to ensure that even if there is a tar-
get in the data, the target does not contaminate the noise estimate. Our strategy
is to define several segments, compute the noise estimate (of length TXlen) from
each of those, and use the minimum as the actual estimate.

The last-but-one item in the example scandef file is the detection threshold defi-
nition. The simplest possibility would be to give a single number here, to define
a constant, range-independent, threshold. However, during much of the time, it
is impractical to use a constant threshold. The typical range-dependent threshold
that we have been using for the taul scans of October 2003 data is shown as the
red line in Fig. 4.4. The ratio-profile (top panel of Fig. 4.4) is pretty much constant
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Table 4.2.: Scandef file for tau2, using 2 us sampling in the SD receiver.

% A scandef template file for space debris scanner
% For experiment tau2_pl 1.00, with 2 us sampling

% IPP = 5580 us, cycle = 11160 us, loop = 357120 us.
% 5 sec integration: 14 loops = 4999680 us + gap 320 us

YA F13 929.9
A F14 930.2

IF2 = 10.1 MH=z
IF2 = 9.8 MHz

% 576 16x32us code

$name
filel
timel
offs

fnumi

gapsize
iperlen
iperoffs

ccflag

fradar
expid
tau

IPPlen
TXon
TXlen

ncycles
nskipcycles

usefastgmf
blocksize
decim
accflag

shift
noiseshift

threshold
maxvel

RADYYYYMMDDhhmmss
/XXX/$name/$name_00001
/XXX/$name/timestamp.data
-2

0

160
2499840
0

1

930.00
tau2_2000
2.0

[ 2790 2790 1]
[ 46 46 ]
[ 288 288 ]

28
16

1

10

4

1

[ 1150:5:2450 3200:5:5250 ]
[ 1500 2000 3250 4000 ]

topside ( 1150, 1670, 7, 5, 5.0 )
5000
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Figure 4.4.: Range-dependent detection threshold. Ionospheric clutter is quite pro-
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nounced below about 500 km altitude. Using a constant threshold would be
problematic in conditions like this.

from about 500 km range upwards, but has a bump in the beginning. This bump
is ionospheric “clutter” . The size, shape and location of the bump depends on the
state of the ionosphere and can change significantly in the course of a few minutes.
We would sacrifice too much sensitivity if we were to insist on having a spatially
constant threshold. Using a constant threshold, perhaps about 12 to 13 in Fig. 4.4,
would of course mean that the hit shown in the figure would be missed.

It is not clear how we should best handle detection sensitivity variation caused
by the changing (both in range and time) clutter level. In most of our work we
have used the “topside” range-dependent threshold as in Fig. 4.4, but not always
with the same parameters. For statistical studies, it seems necessary to maintain a
record of what actually has been the threshold at any given time and range. So far,
we have kept the threshold-profile constant during a measuring campaign. As the
scan definition is saved to the event directory, and we save the event directories,
the threshold is in principle recoverable afterwards. Perhaps we should include the
threshold specification in the analysis results also. Strong clutter obviously will
have some effect also to the signal energy estimate, but that we have not attempted
to take into account. There are not many events in the altitude region below about
500 km affected by clutter, anyway.

Information in the scandef file is moved to a data structure of type SCANDEF, de-
fined in the header file scannerlib.h. This structure is used to build the actual
scan control information for DSCAN runtime use. This entails computing the sizes
and creating the work areas for intermediate products, computing the range de-
pendent acceleration values, computing TXon times for each IPP, computing the
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FFT fiddle factors, and so on. These data are kept in a single structure of type
GMFSETUP, defined in the header file gmflib.h. DSCAN prints out a summary of the
parameters in the GMFSETUP structure before starting the actual scanning. For
example, when the DSCAN is called manually in interactive mode (option -i) using
the UNIX command line command

%> dscan_mat -iac -RVS -n UHF20041112040001 -o testscan tau2_2000
.sdef

with a scandef based to the template of Table 4.2, the program prints to the screen
the messages shown in Table 4.3, then waits for permission to proceed.

Table 4.3.: DSCAN startup messages.

sampling = 2000 mns

n to read = 158988

nipps = 56 (28 cycl)
integr = 156240 (312.480 ms)
skip = 89280 (178.560 ms)
n shifts = 672

shift step = 5 (1.500 km)

shift 0 = 1150 (345.0 km)
shift end = 5250 (1575.0 km)
blocksize = 10

use_fastgmf = 1

n fftin = 4032

fftlen = 4096 (2712)
gmflen = 2033

decim = 4

velo max = 5001 m/s

velostep = 4.92 m/s

O0-velo = -0.000 m/s

cc tx =1

accflag =1

acc 0 = 163 m/s"2 (-1.3e-08)

Iper boundary at: 2004-11-12 04:00:05.005983 (file 1 offset
335020)

Gapseek took 142 ms (9.0 MB/s)
Start position
/Volumes/FWB/0411/Deb0/tau2_2000/UHF20041112040001/
UHF20041112040001_00001:5640 (0 2170620)
2004-11-12 04:00:04.347223
TX at offset O

Output directory = testscan
Start scanning (Y/N): =n

The MF method requires that the location of the transmission samples in the
sample stream is known precisely, so that the transmitted code can be extracted
correctly for the MF model functions. An EISCAT transmission has a strictly
repetitive structure, with period called the experiment integration period, typi-
cally 5,000,000 s (not to be confused with the coherent integration time 7¢ in the
MF method). If one once locates the start of an integration period in a sample
stream, and knows the location of transmission samples within it, it is possible to
calculate a priori the positions of transmission samples in the stream for all in-
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stants of time. The required information is available from the EISCAT experiment
definition files. The only real problem is how to find the position of the start of
an integration period in the stream. The subroutine SYNCHRONIZE achieves this,
based on the lengths of the IPPs in the EISCAT integration period. Normally, there
are only one or two different IPP lengths that are cycled during the integration
period, followed by a single final IPP that is significantly longer than the others.
The expected lengths of all the IPPs can be found from the EISCAT experiment
definition files. SYNCHRONIZE finds the particular IPP that marks the end of an
EISCAT integration period by determining the locations and lengths of the IPPs
in the data by inspecting the transmission ON bit of the sample stream. Note that
we neither require nor use the actual transmitted codes from the EISCAT files,
only the locations of the transmission segments.

It would be possible to manage entirely without the initial synchronization to the
EISCAT integration period. We could always use the transmission bit to find
the location of the transmission samples at the time when new data is read in
for coherent integration, for all IPPs. This was actually the original idea, and
although the search takes some time, it might be worthwhile to implement the
synchronization that way. Then no knowledge of the EISCAT transmission cycling
would be needed a priori. This option remains to be studied.

Once SYNCHRONIZE has determined the locations of the transmission samples, the
stream can be opened for actual scanning and positioned at the precise start of
an IPP. Subsequent positioning can then be based on sample counting. When the
stream is opened, it is also required to specify the time instant of the first sample
at the beginning of the first file of the stream, Also, the sampling interval must be
specified.

The purpose of scanning is finding hits in the data, so that the useful data can be
stored for later, detailed analysis, and the other data thrown away. DSCAN records
the hit locations to the hitlist file. The hitlist file name is formed automatically,
based on the name of the scandef file. The “detailed analysis” basically means to
scan with better resolution. DSCAN saves the information required for the detailed
scanning directly to the hitlist file, so subsequent processing can use the hitlist file
as control input.

At this point, the scanner is initialized, so actual search for the hits can start. The
scanner operates in a loop, reading data, searching, and recording hits, until it is
either interrupted by the operator, or the end of the g-stream is found.

Even though it should be possible to base data block addressing within a stream
entirely to sample counting, once the stream has been initially synchronized, we
do not completely rely on this. One can trust that a computer can do its integer
arithmetic correctly even for large integers. But the data access system may be
causing problems, and there might be missing samples, or extra samples may be
generated. This initially happened in the SD receiver. So we check that the
transmission edges are precisely—within a sample or two—in the places we expect
them to be. Then we can also trust that the target ranges can be derived accurately.

The first step in a scan is to read in the raw data required by the MF method.
We read first an integer number of cycles and then a sufficient number of “extra”
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samples so that when we shift the transmission blocks to the right near the end of
the data segment, there are received samples there, too.

The targets normally are visible in the beam for a few seconds, so it is possible to
speed up the scanning by skipping over some raw data altogether. The amount
of skipping is controlled by the “nskipcyles” in the scan definition file, and is here
visible as the parameter “Nskip”.

The quantity that we use for the threshold detection is the maximum value of the
quantity we call the “Ratio”. It is the MF(R,v), maximized with respect to the
velocity variable, and normalized by r.m.s noise,
z, X(R,w
Ratio(R) = max [Z XTI (4.1)
w ]l o

The nominator is evaluated once per scan. This strategy presumes that the noise
is independent of time within a reception period, which we know is not a very good
approximation.

In a scan, DCAN computes Ratio(R;) for the required set of range gates j. The
computation requires repeated evaluation of the match function. Our match func-
tion evaluation routines, GMF and FASTGMF, are written to handle several range
gates (a block) in a single call. To compute the Ratio, we therefore have a loop,
the BLOCK LOOP, that is executed Nshifts/Blocksize times, where Nshifts is the
total number of ranges required, the length of the vector “shift”, defined in the
scandef file, and Blocksize is the number of gates in a block (that number also is
specified in the scandef file).

Most of its time DSCAN spends in the match function evaluation routine, either
GMF or FASTGMF, depending which one is specified in the scandef file. A single call
to either routine returns, in the matrix gmf2, BlockSize rows, say the rows ji ... js
of the two-dimensional un-normalized MF matrix

MF (R, wk) = (2, x(Rj, wk, a(R;)))]-

Each row is of length GmfLen, and represents a velocity slice of the MF at a fixed
range. GmfLen is determined at DSCAN initialization time to cover the required set
of target radial velocities, as specified by the “maxvel” parameter in the scandef
file.

For the block [j; ... j2] of ranges, DSCAN next computes the Ratio.

After the block loops have been done, the Ratio is ready and can be compared to
the range-dependent threshold, defined in the scan definition file.

It is possible to save the profile R — Ratio(R), the velocity slice v — MF(Rq, v),
and a cycle’s worth of plain raw data into Matlab .mat files for visual inspection in
Matlab. The files are written to the directory specified by the -o option of DSCAN.
For example, the option -SS causes the Ratio for every scan to be saved, and the
option -V causes the velocity slices to be saved, but only from those scans that
actually contain a hit.
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Figure 4.5.: The event composer/archiver program DARC.

18 As the last step in a scan, DSCAN prints some statistics to the screen, and if a hit
occurred, saves the location of the hit and the preliminary basic target parameters,
to the hitlist file. The hitlist file name is out.hlist, and the file is placed to the
DSCAN output directory.

19 After printing out the scan statistics, DSCAN loops back for the next scan. The
program normally exits (via the exit point in line 62 of the DSCAN listing) when
end-of-stream is met. The program can also exit when a predefined number of scans
has been performed or via an error. From many errors DSCAN exits gracefully, but
there is also a rare problem that causes a bus error when DSCAN reads in event
data during analysis high resolution re-scans.

4.3. Archieving—from hits to events

The scanner records the hits it finds into a hitlist file. The hitlist file is an input to the
data archiver program DARC (Fig. 4.5). The primary purpose of the archiver is to save to
permanent storage only those segments of the raw data that contain targets. However,
it is not a good idea to, say, simply save those files that the scanner finds containing
a hit. Normally, also the files adjacent to the hit will contain useful signal. Therefore,
DARC tries to save enough files surrounding the hit to collect into a single place all the
raw data files that contain, or may plausibly contain, the signal due to the target when
it traverses the radar beam. There is no unique way to do that (even the concept of a
radar beam is ill-defined), and a heuristic algorithm is used.

Our implementation of DARC will evolve, but at the moment the program groups hits
to events based on their separation in time (for instance, two consecutive hits separated
by more than 15 s are unconditionally taken to belong to different events), separation in
range (two consecutive hits separated by more than 50 km of range are unconditionally
placed to different events), and, optionally, separation in velocity. It is also possible,
by a command line switch, to put DARC into a tracking mode, where it tries to check
whether the change in range from hit to hit corresponds to the estimated velocity and
the known time interval.
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[ taul_2us » [ hialt » [ U20031013_075830_417 ") event.sdef
[s2 [ U20031013_080122_417 » ** _ UHF20031013075800_00101
[ UHF20031013083200 [ U20031013_080456_417 " UHF20031013075800_00102
[ vhialt [ U20031013_080458_417 " UHF20031013075800_00103
[ U20031013_080602_417 " UHF20031013075800_00104
[ U20031013_081524_417 " UHF20031013075800_00105
[ U20031013_081828_417 " UHF20031013075800_00106
[ U20031013_081908_417 " UHF20031013075800_00107
 U20031013_082822_417 _ UHF20031013075800_00108

[ U20031013_083050_417
T U20031013 NR3I245 134

Figure 4.6.: FEvent directory hierarchy. Based on a hitlist, the event archiver DARC
determines the raw data files belonging to an event and copies the files to
directories, one event per directory. In addition to the raw data files, DARC
copies also the relevant part of the hitlist file to the event directory. Only
those hits belonging to the event are copied, in addition to the scan definition
part. By convention, this hitlist file is named as “event.sdef”.

Thus, in the first phase DARC creates (and optionally prints out for interactive in-
spection) a list of event start and end hits. Then a fixed amount of time is added to
both ends of the implied segment of the raw data stream. In the last phase, DARC uses
the expanded list to copy files from the raw data directories to the event directories,
such as those shown in Fig. 4.6. The original raw data can then be deleted. Parameter
estimation uses the raw data from the event directories.

An example DARC run is shown in Fig. 4.7. The program is fast. Almost all of the
time goes to copying the files, so the speed is mainly limited by hard disk performance.
With our typical event rates, storing permanently only the events and not all of the raw
data saves considerable amount of disk space. In the example shown in Fig. 4.7, the 28
saved events consume 378 MB, while the original 3600 s of raw data required 6870 MB.

Manual cleaning of hitlists

A problematic point in the data processing is the interface between detection and anal-
ysis, the step that involves grouping the detector hits into events. This step is handled
by the event-archiver program DARC. If DARC manages to produce a “good” event, the
analysis programs can in most cases make reasonable sense of it automatically. But
we have found that we can vastly improve the event selection by looking the data—the
ratio profiles and DSCAN output hitlist files—interactively. If we do not perform this
interactive step, the analysis results contain an unacceptably high proportion of dubious
events. Even if we could remove the bad events in, or after, the analysis phase, we would
be wasting resources by archiving and processing the invalid events.

We seem to have arrived to one of the situations where a computer program is badly
handicapped compared to the trained human eye. The most convenient phase for the
human intervention in the present case is when we still have all the raw data available.
This is unfortunate, for then the trained human is required to intervene fast, before disk
space runs out.

There seems to be no easy way out. For example, just trading out some sensitivity by
raising the detection threshold does not solve the problem. We probably need to teach
the computer some of the heuristics the trained human would be using to select the good
events, and see what comes out of it.
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/scans/oct@3/hialt/UHF20031013083200.0out> darc -d /events/timingtest_events *.hlist

Event 1/28 U20031013_083245_134 22-26 10.0 s 15.3 MB 1.0 s
Event 2/28 U20031013_083833_134 196-199 8.0 s 11.4 MB 0.7 s
Event 3/28 U20031013_084229_134 314-317 8.0 s 11.4 MB 0.8 s
Event 4/28 U20031013_084819_134 489-493 10.0 s 15.3 MB 0.9 s
Event 5/28 U20031013_085029_134 554-558 10.0 s 15.3 MB 1.0 s
Event 6/28 U20031013_085339_134 649-652 8.0 s 11.4 MB 0.8 s
Event 7/28 U20031013_085645_134 742-744 6.0 s 7.6 MB 0.6 s
Event 8/28 U20031013_085719_134 759-763 10.0 s 15.3 MB 0.9 s
Event 9/28 U20031013_085725_134 762-767 12.0 s 19.1 MB 0.9 s
Event 10/28 U20031013_085743_134 771-774 8.0 s 11.4 MB 0.7 s
Event 11/28 U20031013_085835_134 797-799 6.0 s 7.6 MB 0.6 s
Event 12/28 U20031013_090101_134 870-874 10.0 s 15.3 MB 0.9 s
Event 13/28 U20031013_090201_134 900-903 8.0 s 11.4 MB 0.8 s
Event 14/28 U20031013_090649_134 1044-1047 8.0 s 11.4 MB 0.8 s
Event 15/28 U20031013_090651_134 1045-1048 8.0 s 11.4 MB 0.4 s
Event 16/28 U20031013_090651_134 1045-1048 8.0 s 11.4 MB 0.2 s
Event 17/28 U20031013_090653_134 1046-1050 10.0 s 15.3 MB 0.5 s
Event 18/28 U20031013_090859_134 1109-1112 8.0 s 11.4 MB 0.8 s
Event 19/28 U20031013_090931_134 1125-1128 8.0 s 11.4 MB 0.7 s
Event 20/28 U20031013_091041_134 1160-1164 10.0 s 15.3 MB 0.9 s
Event 21/28 U20031013_091239_134 1219-1222 8.0 s 11.4 MB 0.7 s
Event 22/28 U20031013_092043_134 1461-1465 10.0 s 15.3 MB 0.9 s
Event 23/28 U20031013_092131_134 1485-1489 10.0 s 15.3 MB 0.9 s
Event 24/28 U20031013_092151_134 1495-1503 18.0 s 30.5 MB 1.6 s
Event 25/28 U20031013_092401_134 1560-1564 10.0 s 15.3 MB 1.0s
Event 26/28 U20031013_092503_134 1591-1594 8.0 s 11.4 MB 0.7 s
Event 27/28 U20031013_092611_134 1625-1628 8.0 s 11.4 MB 0.7 s
Event 28/28 U20031013_092755_134 1677-1680 8.0 s 11.4 MB 0.7 s

Saved 378 Mbytes (198.00 s) data in 22.1 s

Figure 4.7.: A DARC run on 3600 s of taul 2 us data.
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Even a cursory look at the analysis summary plots reveals many cases that have only a
single point in the time series, just above the detection threshold. Many of the suspicious
events are also near the edges of the search range (there are four edges in tau2 search
range, because the used range 195-1575 km contains a blind zone between about 735
and 960 km).

If one then looks at the Ratio curves that the scanner uses to perform the threshold
detection, one finds that, indeed, many of the near-edge events probably are associated
with targets that actually are outside the search range. These events must be disre-
garded. Also, looking at the Ratio curves and the hitlists produced by the scanner, one
sometimes finds that in the middle of a clear, ongoing event, due either to the target’s
internal scintillation or to the target moving to a low-gain part of the antenna beam
pattern, the target vanishes for a while. During that moment of a weak echo, some
spurious spike elsewhere in phase space can grab the attention of the event archiver.
The result is that a set of hits, which really represents only a single event, gets split into
two or perhaps even three separate events. These are treated by separate events in the
analysis, which will distort the event count statistics.

For the time being, we have resorted to going graphically through the Ratio and
velocity slice files produced by the DSCAN. The Matlab program that we use for this
purpose is also connected to the stream’s hitlist file, so that we can comfortably (by a
mouse click) remove the bad-looking hits from the hitlist. It normally takes less than an
hour to clean 24 hours of raw data. We remove the obviously non-belonging, spurious-
looking spikes; and the spikes near the search range edges; and the hits that most
probably are caused by range-aliased targets (these have a rather conspicuous signature
also). Then we run the archiver and analyser using the manually cleaned hitlists as DARC
input. The cleaning helps the archiver to make correct grouping decisions, and no other
manual intervention is required to produce sensible-looking results. For example, instead
of 67 events found when using the original, un-cleaned hitlists in the performance test
run shown in Fig. 4.2, the archiver after manual hitlist cleaning picked only 16. From
those 16, the analyser disregarded two as too weak, recording only 14 true events to the
result files. These numbers are representative.

4.4. Analysis—from event data to event parameters

The basic idea in the event parameter estimation is to perform a high resolution re-
scan of the event’s raw data, in order to produce time series of range, velocity, and
MF maximum value, and then make linear or quadratic fits to the time series points
to get R(t) and vp(t). The re-scanning is done with DSCAN, while the fitting and the
associated graphics is done with Matlab routine DAN.M, from our previous study. These
tasks are done under Matlab control, by the function SD_ANALYSE_EVENT, as charted in
Fig. 4.8. Matlab can invoke external UNIX commands like DSCAN in a standard way,
SO SD_ANALYSE_EVENT prepares a suitable scan definition file for DSCAN—based on the
event’s hitlist file event.sdef—launches the scanner, and reads the scan results from a
hitlist file. Then it calls the fitting and plotting m-file DAN.m, to find and plot the
event parameters. The plots we call event summary plots, and the file were the event
parameters are written has the standard name eventlist.txt. The summary plots are
accumulated to a single multipage postscript file, events.ps. The eventlist.txt and the
events.ps file are meant for quick-look purposes. The actual results are saved into an
event-specific result directory. The current version of the analysis software saves the
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4.5. Real-time control of SD measurements

event summary plot as an encapsulated postscript file, and saves the plotted time-series
data also in numerical form, simply by copying the DSCAN output file temp.hlist to the
event’s result directory. The event parameters are saved to a separate event parameter
file, for which we use the extension ‘.epar’. An example of such an event parameter file is
shown in Table 4.4. The file has a simple format, so that it is readily machine-readable;
but it is also human-readable; and it should be easy to add more parameters into it, like
some error bounds, as they become available.

Table 4.4.: Event parameter file U20040907_-165038_519.epar.

A NM Event name UT.

yA XI Experiment ID string.

A TM UT of max Ratio.

YA ST System temperature K.

yA AG Antenna gain dB.

yA WL Radar wavelength m.

yA PW Transmission power MW.

% AZ Azimuth degr, N=0, E = 90.

YA EL Elevation degr.

% RT Max Ratio ( = estimate of sqrt(SNR_N)).

yA RG Range km.

% RR Range rate (km/s).

% VD Doppler velocity (km/s), positive away from radar.
% AD Acceleration from VD, m/s”2.

% DI Effective diameter cm. Estimated from ST,PW,RT,RN,AG,WL.
% CS Lower bound of radar cross section, cm~2. Estimated as DI.
% TS (Transmission sample power)/(Noise power)

% EN Event number.

h

yA NaN = Bad.

yA

A 25-Nov-2004 18:37:43

NM = U20040907_165038_519
XI = taul_2000
™ = 2004 9 7 16 50 43.848

ST = 100

AG = 48.1

WL = 0.323
PWw = 1.20

AZ = 133.3
EL = 61.6

RT = 311.8
RN = 523.841
RR = -3.261
VD = -3.181
AD = 84.73
DI = 5.31

CS = 14.3286
TS = 18.73
EN = 22

4.5. Real-time control of SD measurements
Normal ionospheric measurements at the EISCAT radar sites are performed by running

an experiment-specific script under the radar’s real-time control system EROS. Similarly,
a space debris measurement is performed in practice by running a specific “experiment
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debris.elan

MAIN { } {

1. Define campaign name.

. Define log file used by recorder.

. Define scanner output root directory.
. Define event archive root directory.

. Define analysis result root directory.
. Wait for recorder/scanner commands.

e
oy U W N

}

BLOCK Recorder {exp sampling side length} {

# Start raw data recording loop
}

pop
BLOCK Scanner { args } {
# Process options %)
while {1} { gg
# 1. Pop topmost stream from FIFO £
# 2. Find a free SCANNER.sh and 2
# launch it on the stream 1
# 3. Sleep for a while push
}

}

Figure 4.9.: SD measurement as a DROS experiment. The experiment script debris.elan
is reminiscent of all other EISCAT experiment scripts. The script first de-
fines the various places in the filesystem used in the data recording and
analysis, and then goes to an idle loop, where it waits for an operator com-
mand to start/stop the Recorder and the Scanner subroutines, defined in
the script. The operation of the two subroutines is organized around a FIFO
data structure, which consists of g-streams of raw data. The recorder in-
serts new 1-hour steams into the FIFO, and the Scanner removes them as
fast as it can. The Scanner subroutine calls the master UNIX shell script
SCANNER.SH, which handles the stream by calling the DSCAN, DARC and
ANALYSER processing blocks.

script”, debris.elan, under an adapted “EROS”, the DROS system. An outline of the script
that we have been using in our recent campaigns, debris.elan, is shown in Fig. 4.9.

The the whole processing chain—scanning, event archiving and parameter estimation—
is controlled via scripts, launched by DROS. The master do-it-all UNIX shell script is
DSCANNER.sh. The script first invokes the DSCAN scanner on a stream and waits DSCAN
to get the scanning done. Then the script invokes the event-archiver DARC to group
the hits into events, and copy the raw data associated with the hits to event-specific
directories. When this is done, the script invokes the Matlab script SD_ANALYSE_EVENT
to perform parameter estimation. The estimation results are written to an eventlist file,
and a summary plot is prepared also. When all this is done, DSCANNER.SH returns, and
can be called again, to process another stream. Two copies of the script and its child
processes can be running simultaneously.
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4.6. Processing speed

The most time-consuming part of the data processing is the scanning done by DSCAN.
An example of DSCAN performance during real operation is shown in Table 4.5. The
table shows the standard performance info reported by each DSAN after a stream has
been processed. The measurement was done during the campaign in March 2004. The
EISCAT experiment was taul and the SD receiver was sampling with 2000 ns sampling
interval. The scanners had no problem in keeping up with real time. Each scanner
processes 0.3 seconds of input data and then skips 0.2 seconds. According to the table,
it took less than 200 ms to scan this 1.0 second of input data, while new data was being
collected at the same time.

Table 4.5.: DSCAN speed when scanning taul 2 us data with FMF. Both the recorder
GUMP and two DSCAN scanners were active simultaneously. The recorder
writes sample data at the rate of 2-10° Bytes/s over the network to the
same FireWire disk on the analysis computer from which the two DSCAN
scanners read it. The processing speed is about 4000 MFlops.

scanner 1
7318 scans -- 1400.0 sec -- 98 hits
Time per scan : 191 ms
Read per scan : 41.6 ms 0.60 MBytes 14.3 MBytes/s
Time per gate : 0.260 ms

FMF per gate : 0.199 ms 0.398 MOp 2000 MFlops
scanner 2

7318 scans -- 1405.2 sec -- 135 hits

Time per scan : 192 ms

Read per scan : 41.5 ms 0.60 MBytes 14.3 MBytes/s
Time per gate : 0.261 ms
FMF per gate : 0.200 ms 0.398 MOp 1993 MFlops

Table 4.6.: DSCAN speed when scanning tau2 0.5 us data with FMF. Benchmark condi-
tions (0.3 s integration), with raw data recording running onto the same disk
in the G5 analysis computer from which the scanners read their data. This
test was done in Sodankyld using 30 minutes of tau2 500 ns data for each
scanner, originally recorded 9:30-10:30 UT, March 10, 2004. The processing
speed is about 2600 MFlops.

scanner 1
3654 scans -- 2111.4 sec -- 119 hits
Time per scan : 578 ms

Read per scan : 161.1 ms 2.38 MBytes 14.8 MBytes/s
Time per gate : 0.860 ms

FMF per gate : 0.611 ms 0.811 MOp 1327 MFlops
scanner 2

3654 scans -- 2114.4 sec -- 105 hits

Time per scan : 579 ms

Read per scan : 161.2 ms 2.38 MBytes 14.8 MBytes/s
Time per gate : 0.861 ms
FMF per gate : 0.613 ms 0.811 MOp 1324 MFlops

We have not recorded timer information during the test campaigns when using faster
sampling rates. Instead, we have timed the whole DROS processing chain under bench-
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mark condition in Sodankyld. The GUMP recorder just recorded noise, but the data
read-in by the DSCANNER.SH was real data from the campaign. The performance mea-
surement therefore is representative of real operations in all essential respects. When
the input data was one hour of tau2 500 ns data, originally recorded between 9:30 and
10:30 UT, March 10, we got the following performance. The DSCAN scanners’ statistics
is shown in Table 4.6. According to the table, both scanners required about 35.5 min-
utes to handle their 30 minute set of raw data. The FMF algorithm proceeds at about
1.3 GFlops on both processors. After the scanning, we thus had 24.5 minutes left from
the hour for other tasks. The DARC archiver grouped the 119 and 105 hits produced by
the DSCANs to 37 and 30 events, and used about three minutes to copy the event raw
data from the FireWire disk to the event archive on the internal hard disk of the analysis
computer. Finally, the analysis, running on two DSCANNER.SH processes, took about six
minutes to complete. The analysis produced 37 “final” events, out of its 67 = 37 + 30
input events. Thus, the whole processing of the 60 minutes of raw data took about
45 minutes from beginning to the end.

No manual intervention was used in this speed measurement. As was therefore to be
feared, in this test both the archiver and the analyser performed a lot of futile work,
which could have been avoided if DARC would have been more up to its task. We point
out in the next chapter that there appears to have been only 14 real events in the data.
True archiving and analysing processing time requirement for this data set is thus more
likely (14/67) % (3 + 6) ~ 2 minutes instead of 9 minutes.

Speed of the match function and fast match function algorithm as implemented by
the GMF and FASTGMF routines, called by DSCAN, is shown in Tables 4.7 and 4.8. The
timing measurements were done using the 1 GHz G4 Mac that we normally use as
the measurement computer. The 2 GHz G5 Mac where the DSCAN is run in normal
configuration is two times faster. With our standard 300 ms integration time, almost all
of the processing time in the standard MF goes to the long (2'® to 220 points, depending
on the used sampling rate) FFT. We call the FFT_zIP routine in Apples vdsp library,
which uses the AltiVec vector processor onboard the G4 and G5 systems. For the cache-
limited problem, we get (only) about 400 MFlops in the FFT on a 1 GHz machine. But
for data vectors that fit into the cache, the AltiVec-boosted FFT is fast; for the four
kiloword FFT that we normally use in FMF, we get about 5000 MFlops in the 1 GHz
machine. Our timing might not be quite reliable here, though, due to the very short time
spend in a single fft call. We use the Apple DSP library also for complex multiplication,
but there the speed is somewhat of a disappointment (plain C code which does not touch
the AltiVec was only about twice as slow).

4.7. Verification of the C implementation of the scanner

In the precursor study we had implemented the MF and the FMF algorithms with
Matlab. Here we show that the new C language implementation reproduces the earlier
results. We will also show that our new, more automated processing does not lose us
much sensitivity. We re-processed with the new software the two data-sets collected
during the previous study, and compared with the old analysis. The data sets are both
from February 2001, one which we label feb01-cp1-600 and the other that we label feb01-
tau2-500, the notation indicating the EISCAT experiment name, and the SD receiver
sampling interval in nanoseconds.
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Table 4.7.: Detailed performance when DSCAN is scanning tau2 0.5 us data using the
MF, with 312 ms integration. The test was done on a 1 GHz G4 Mac. The
speed is determined by the speed, 410 MFlops, of the 2?° point FFT. Time
per range gate is 310 ms, with mean computation speed of 390 MFlops.

Scan parameters

n to read 635804
n ipps 48 (24 cycles)
n per tx 11562
integration 624960 (312.480 ms)
skip 312480 (156.240 ms)
n shifts 692
shift step 20 (1.500 km)
shift 0 6000 (450.0 km)
shift end 22700 (1702.5 km)
MF parameters
fftlen 1048576 (2720)
mflen 32477
decim -
velo max 5000 m/s
velostep 0.31 m/s
Scanner timing
Read/scan 99.8 ms 2.38 MBytes 23.9 MBytes/s
Time/gate 310.4 ms
MF/gate 300.5 ms 112.0 MOp 373 MFlops
MF internal timing per range gate
Operation N Op us MFlops
x(t)*y (t) 48%1152 332000 3270 102
X(t)*xe~(iat~2) 48%1152 5565000 14900 37
FFT 2720 111149300 271000 410
Total 112040000 289000 387
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Table 4.8.: Performance of DSCAN when scanning tau2 2.0 us data using FMF, with
312 ms integration. Th test was done on a 1 GHz G4 Mac. Time per range
gate is 0.47 ms, with mean computation speed 1000 MFlops.

Scan parameters

sampling 2000 mns

n to read 158988

n ipps 56 (28 cycl)

n per tx 288

integration 156240 (312.480 ms)
skip 89280 (178.560 ms)
n shifts 686

shift step 5 (1.500 km)

shift O 1150 (345.0 km)

shift end 5250 (1575.0 km)
FMF parameters

n fftin 4032

fft length 4096 (2°12)

fmf length 2033

decim 4
velo max 5001 m/s
velostep 4.92 m/s

Scanner timing
Time/scan 323 ms
Read/scan 35.3 ms 0.60 MBytes 16.9 MBytes/s
Time/gate 0.470 ms
FMF/gate  0.403 ms 0.424 MOp 1053 MFlops
FMF internal timing per range gate

Operation N Op us MFlops
x(t)*xy(t) 56%288 96768 176 550
Sum xy_n 56%288 32256 127 250
X(t)*xe~(iat_072) 56%72 24416(a) 74 330
FFT 4096 270486 48 5600
Total 423926 425(b) 1000

a) 56%4 + 4032%6
b) Measured FMF/gate was 488 us.
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Verification of the similarity of the results

Figure 4.10 shows the scanning result for the benchmark event of the previous study
(Fig. 4.12 on p. 74 of [10]), when the FMF algorithm is used. Taking into account that
there are some smallish differences between the two implementation, the agreement of
all basic quantities (Ratio, range and velocity) probably is as good as can be hoped for.
The implementation differences include the following.

e In the C implementation, the MF normalization by r.m.s noise to form the Ratio is
done on scan-per-scan basis. In the Matlab implementation, the noise background
may well get contaminated by a target, but we try to compensate this by (the
cumbersome means of) estimating the contamination from a large set of recorded
scans. Moreover, in the Matlab implementation, an average Ratio(r) is formed
and subtracted from every individual Ratio, to reduce systematic “distortions” in
the Ratio profile. This is not done in the C implementation.

e Acceleration correction in the FMF in the C implementation is done using only a
single phase value per IPP. That is, for each IPP, we approximate the correction
vector

o
e forn=mn1...n9,

by a constant vector

ere<n>*(1 1),

where <n > is the mean of n; and ny. This reduces the number of complex
exponentials that we need to evaluate by a factor of several tens at least, while
still being sufficiently accurate for integrations that are some sizable fraction of a
second.

e The internal double precision (64-bit reals) Matlab numerical accuracy is somewhat
better than the single precision (32-bit reals) accuracy that the C implementation
uses. Conceivably, this could become visible in the long FFTs.

e The C implementation performs FFT using vectorized code from Apple’s DSP
library. The library routines accept only input lengths in powers of 2, so we zero-
pad our input vectors when necessary. In the Matlab implementation, we use
whatever lengths the input vectors naturally are. This may slightly affect velocity
resolution, and therefore also the Ratio.

We never had the patience to compute the event of Fig. 4.10 with the MF in the
Matlab implementation—it would have taken about 24 hours. With the C-based MF,
this became possible. In Fig. 4.11 we show the benchmark event computed both with
the new MF and the new FMF, as invoked in DSCAN. Clearly, the two C algorithms give
mutually consistent results, the MF being slightly more accurate as expected. Thus the
C version of the MF probably is alright, too.

Verification of the detection sensitivity

Before considering the scan results, we need to point out that we cannot really expect
precisely the same sensitivity here as we got earlier. In the earlier study, we went to great
lengths to painstakingly scan and re-scan the data small segments at a time, to always
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Figure 4.10.: Comparison of the C and Matlab implementations of the FMF algorithm.
Red line with big circles is Matlab data, blue line with small circles were
computed with the C implementation.
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Figure 4.11.: Comparison of the C implementation of the FMF and the MF algorithms.
Large blue circles are DSCAN output from FMF, the green line and the
small circles are from the MF.
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achieve maximum sensitivity. Basically, we were setting a very low detection threshold,
hand-picked for the particular range interval, and then disregarding the numerous false
alarms by manual inspection. Some loss of sensitivity was therefore to be expected.

We have only one stream of cpl data available. Processing the 10255 seconds of data
took only 5515 seconds on the G5, even when we were using only a single DSCAN process
for the scanning. From the tau2 experiment of February 2001 we have now studied three
data sets, of sizes 1242 s, 3704 s, and 1269 s, of which only the 3704 s set had been
processed earlier.

We were able ultimately to detect all the 45 cpl events that we had found earlier, and
which are collected in Table C.1, on p. 105 of [10]. However, due to the manual cleaning
of the hitlists, in one of our several analysis re-runs of the febO1-cpl data sets, one of the
old, week events was overlooked. On the other hand, in addition to the hits belonging
to 43 old events, the re-analysis found 23 events that we have not reported earlier, see
Fig. 4.12. Many of them were found now simply because of the larger range coverage,
made feasible by the increased processing speed, but some of them should have been
visible in the old scans also.

Of the 11 tau2 events found in the old scans in the 3704 s data set, listed in Table C.1,
p. 105 in [10], our first re-analysis run found only 8. One event was just a trifle too small
to exceed the rather conservative range-dependent threshold used in the re-analysis, but
was clearly visible in the Ratio plot. The two other missing events (events 4 and 9 in the
Table C.1), were simply too weak to show up now. We do not believe that this is is due
to any real differences between the Matlab and C implementation. Rather, this is an
example of the case where we must trade some detection sensitivity for the possibility
to process data more automatically. However, because our contract agreement said that
we should reproduce all the 45+11 events of the previous study, we of course did dig
out the remaining two weak tau2 events also. With prior knowledge of their range this
was possible, by scanning over a much limited range interval.

The occurrence of some new events and the missing of some old events underlines a
problem in manual data processing: it is difficult to achieve the same level of repeatability
as with a fully automated processing.
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Figure 4.12.: Effective diameter versus range in re-analysed February 2001 data. The
cpl data was scanned using alternating codes only. From the 45 cpl events
catalogued in [10], the run shown here found 43. In addition, the run
found 23 previously neglected events. The scanned ranges for cpl were
300-630 km, 808-1403 km, and 1550-1810 km. In tau2, the plot shows 8
old events out of 11, and in addition 11 new events; ranges were 300-850 km
and 1080-1700 km.
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In this chapter we show examples of the analysed results of the EISCAT measurement
campaigns performed for this study. To incorporate late updates of the analysis pro-
cedure, we have for this report re-analysed all the data sets, both using the FMF and
the MF algorithm. We have not re-scanned the raw data (even where we still have it
available), though, but our starting point has been the set of events found in the original
DSCAN runs done at the campaign times. One consequence is that the range coverage of
the data sets vary, for we realised only late that it is useful to monitor higher-than LEO
regions even when the primary interest is in LEO. In the future, we intent to monitor
ranges up to and including the third reception window, but now we have done so only
for the beam-park experiment data, such as shown in the top panel of Fig. 5.5 on p. 92.
Even where we have data from higher ranges, in this chapter we mostly show the data
only from the LEO region, up to an altitude of 2000 km.

In our measurement campaigns, all conducted at the EISCAT UHF radar in Tromsg,
two EISCAT experiments were used, the so called taul and tau2 experiments. These
experiments are representative. In fact, the two transmission patterns, when combined
with user-defined ways of pointing the UHF antenna, have been pretty much the only
experiment modes used at the UHF system in the last two or three years. The situation
is not expected to change anytime soon, either. We recall the taul and tau2 transmission
schemes in section 5.1. In section 5.2 we list our data sets: five sets collected during
the two contract-stipulated test campaigns and the 2004 beam park campaign; and in
addition, a sixth data set that we happened to be in the position to collect, outside
our original schedule, very late in the project. Detailed analysis of the last mentioned,
100 hour data set is still pending, and will be relegated to future work. In sections 5.3
5.5 we plot the basic parameters of 2653 events in various ways. The plots are only for
illustration of what kind of data we have; it is outside the scope of this work to make
inferences about the properties of the target population.

5.1. The EISCAT transmissions taul and tau2

The taul transmission has, as EISCAT UHF ionospheric experiments go, an excep-
tionally long range, giving uninterrupted range coverage from about 200 km to about
1500 km. The transmission consists of alternating codes!, each of duration 16 x 60 ys.
Two frequency channels are used interleaved. The interpulse period is 11160 us. The
duty cycle is 8.8%. Timing diagram of the transmission is in Fig. 5.1. The experiment’s
present transmission frequencies, EISCAT frequencies F13 and F14, are only 300 kHz
apart, therefore, it is sufficient to band-pass sample the signal using 2000 ns sampling
interval in the SD receiver.

The tau2 transmission is at the moment by far the most popular in EISCAT UHF
experiments. The transmission cycle consists of 32 alternating codes per frequency

L An alternating code is a special binary phase code, developed for incoherent scatter applications by
M Lehtinen and others. There are 32 different codes in the complete code set.
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channel, each code of duration 16 x 36 us. Two frequency channels are used interleaved.
The interpulse period is 5580 us. The experiment has somewhat higher duty cycle,
10.3%, than taul, and is therefore inherently slightly more sensitive. However, tau2
typically gives considerably lower total detection rate than taul. As the timing diagram
in bottom panel of Fig. 5.1 shows, that is because tau2 has a wide “blind zone” which
includes the altitude region of maximum debris density around 850 km, when one is
using a near-vertical antenna pointing.

5.2. The data sets

During this study, we performed two test measurement campaigns as stipulated in our
work contract, the first in October 2003, the second in March 2004. In addition, we
took part in the beam park 2004 multi-radar SD measurement campaign, by a run
in September 2004. Finally, we measured four days during a standard EISCAT CP1
experiment in November 2004. The data sets are the following.

1. 10.6 hours of taul data, recorded in three intervals in October 13, 14 and 16, 2003,
using 2000 ns sampling interval in the SD receiver. We refer to this data set of
232 events by oct03-taul-2000. In the analysis, we assume transmission power
1.2 MW and system temperature 100 K for these data. The mean event rate is
21.9 events/hour.

2. 13.9 hours of taul data, recorded between 11:30 UT, March 4 and 01:00 UT, March
5, 2004, using 2000 ns sampling interval. We refer to this data set of 286 events by
mar04-taul-2000. The mean event rate is 20.6 events per hour. During the March
campaign, both UHF transmitter klystrons were in use for the first time in the
course of our SD work, and the transmission power was fairly stable, nominally at
1.5 MW 4+ 0.2MW during almost all of the recording time. The value 1.5 MW is
used for all March 2004 data. This value might be an overestimate though, by as
much as about 30%, for the value is based on the klystron high voltage readout
and a torturous formula, calibrated for the previous single-klystron configuration.
We use system temperature 100 K for all the March 2004 data.

3. 10.9 hours of tau2 data, recorded 01:00-11:00 UT, March 5, and 14:50-16:00 UT,
March 10, 2004, using 2000 ns sampling interval. We refer to this data set of 146
events by mar04-tau2-2000. The mean event rate is 15.0 events/hour.

4. 5.4 hours of tau2 data, recorded 08:30-14:00, March 10, 2004, using 500 ns sampling
interval. We refer to this data set of 102 events by mar04-tau2-500. The mean
event rate is 18.8 events/hour.

5. 16.6 hours of taul data, recorded from 15:49 UT, September 7, to 08:29 UT,
September 8, 2004, using 2000 ns sampling interval. We refer to this data set of
368 events by sep04-tau1-2000. The mean event rate is 22.1 events/hour. This
data set is part of an international, multi-radar SD measurement campaign, so
called beam park campaign. We use Tiys 100 K and transmission power 1.2 MW
for this data set.

6. 100 hours of tau2 data, recorded from 09:02 UT, November 09, to 14:00 UT,
November 13, 2004 using 2000 ns sampling interval, during a standard EISCAT
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Figure 5.1.: Timing diagrams of the taul (top panel) and tau2 (bottom panel) EISCAT
transmissions. Both transmissions use two frequencies and phase-code
modulation. A complete transmission cycle consists of 32 different codes
AC1...AC32 on each frequency channel, so that the first truly ambiguous
range occurs only after 64 interpulse periods (53,500 km and 107,000 km
for tau2 and taul, respectively). The diagrams indicate the time of trans-
missions, the interval of receiver protection around the transmissions, and
the time/range windows inside which it makes sense to look for hard tar-
get echoes with the MF method. Note that the usable window is cut by a
code length before the start of next receiver protection window, for we are
not, in the present implementation of DSCAN, prepared to handle the case
that the tail part of target echo would fall into the protection window. The
blue stripes show the range intervals that DSCAN actually used in some of
the data analysis described in this report; the stripes take into account the
skipping done to avoid regions of strong ionospheric clutter.
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ionospheric experiment. We refer to this data set of about 1500 events by nov04-
tau2-2000. We use Ty 120 K, transmission power 1.2 MW. According to EISCAT’s
(quite new, and not fully tested calorimetric) transmission power monitoring, the
power varied between 0.9 MW and 1.4 MW during the run, but we have not
attempted to account for the variation in the analysis. The anomalously high
system temperature was caused, as it later turned out, by a loose connection in
the second, uncooled, stage of the two-stage GaAsFet preamplifier unit. This is our
first SD campaign where we have not saved the original raw data. Not having the
raw data is lamentable, because we would now like to extend the range coverage
of target search.

For the September 2004 data, the Tromsp UHF antenna (geographical latitude 69.6°N
and longitude 19.2°E) was pointed to azimuth 133.3°, elevation 61.6°, for all other data
sets, the antenna was pointed to the magnetic field aligned direction, azimuth 184.0°,
elevation 77.1°.

5.3. Detection rate versus altitude

Figures 5.2 and 5.3 show target detection rate as a function of altitude for taul and tau2
data sets, in 50 km bins. The figures also indicate by cross-hatching the altitude regions
where targets were not looked for by DSCAN. Bins adjacent to those regions partially
overlap with them, and have an artificially low detection rates. In addition, there may
be “selection effects” near the edges of the forbidden zones, due to the manual screening
of detection hits. In the taul data, the well-known generic features of LEO SD data
are nevertheless reproduced, with the peak around 900 km altitude and a maximum
developing, but not fully visible, towards 1500 km altitude. The tau2 data (middle and
bottom panel in Fig. 5.3) has maximum at 1000 km, but as is seen, is blind to precisely
those bins, centered at 800 km, 850 km and 900 km, where the taul data have maximum.
Nevertheless, the peak value is about 2.5 events/hour/50 km bin in both cases. This
is not inconsistent with the expected greater sensitivity of the tau2 experiment. On
the other hand, in the beam park taul data (bottom panel of Fig. 5.2), where we used
somewhat lower elevation than in the other data sets, the maximum detection rate is at
1000 km altitude.

5.4. Effective diameter and RCS

Figures 5.5-5.10 illustrate the observed signal strength, in terms of the effective diameter
and the lower bound RCS,,;, of the radar cross section. The RCSy,i, is computed from
Eq. (3.22), using the measured SNRy, the measured range, and known radar parame-
ters. The effective diameter dog, corresponding to a given RCSyiy, is the diameter of a
conducting sphere that would yield the same cross section, but with the simplification
that we ignore the resonant region in the standard cross section formula. We get the
simplification by extending the optical region formula RCS = md?/4 towards smaller
sizes until we can start using the Rayleigh formula

2 4
RCS = % 9 <7;d> (5.1)
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Figure 5.2.: Detection rate vs. altitude in taul experiments. The data sets from top to
bottom are oct03-taul-2000, mar04-taul-2000 and sep04-taul-2000.
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5.5. Velocity and acceleration
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Figure 5.4.: Effective diameter as function of RCS for EISCAT UHF radar.

for the cross section of a small conducting sphere. For EISCAT UHF, the cross-over
point where we change the RCS/d.g relation is at d = 5.9cm, RCS = 27cm?. The
relation between RCS and deg for the EISCAT UHF is shown in Fig. 5.4.

Figure 5.5 mainly serves to illustrate the detection limit as function of range. The top
panel in the figure also shows that the sensitivity is not improved by faster sampling.
All panels in Fig. 5.5 show that our detection limit at 1000 km range is about 20 mm
in terms of the effective diameter. Figure 5.6 shows the region near 1000 km range in
more detail, both for taul and tau2 transmission. The tau2 transmission appears to
give a little better detection sensitivity, something like 2.15 mm versus 2.20 mm (using
the MF estimates), though this miniscule difference can be just the effect of the taul
data having much fewer data points. What would we expect in this case? The detection
criterion at and around 1000 km range was

max MF
—>5

Onoise

in all the data sets. At 1000 km range, with the values of Ty, and transmission power
that we have been using for the shown data sets, this corresponds to effective diameter
20.7 mm (RCS = 5.2mm?) for both taul and tau2 data. Normally, we would expect
tau2 data to be about a mm more sensitive in terms of the effective diameter at this
range, but for the data sets shown in Fig. 5.6, the system temperature in tau2 was 20%
higher than in taul, and this cancels the benefit of the 20% higher duty cycle.

5.5. Velocity and acceleration

Figures 5.11-5.14 show radial velocity in all six data sets, both the directly observed
Doppler-velocity vp, and the velocity vgg fitted from the R = R(t) time series generated
by the beam passage. The analyser DAN (Fig. 4.8) does not attempt to determine vgg if
there are too few good points R(t,) available. Both which points are considered “good”,
and the actual required number of them, are tunable; presently, we require at least
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Figure 5.5.: Effective diameter vs. range. The top panel shows mar04-tau2-500 (cyan)
and mar04-tau2-2000 (blue) data. The middle panel shows oct03-tau1-2000
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The x-axis upper limit corresponds to altitude 2000 km in all panels.
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Figure 5.7.: Effective diameter in taul experiments.
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95



5. Measurements

N / hour / 10 mm? bin
N

[ ]oct03-tau1-2000

1, L
0 T T T '_'_i_! T T =
0 50 100 150 200 250 300 350 400
RCS . (mm?)
min
4 1
[ ] mar04-taul-2000
£, I
o -
IS
1S
S 2 -
5
o
ey
- 1 -
z
O T T T T '_Y_‘ |_| T '_'_‘\ == =
0 50 100 150 200 250 300 350 400
RCS . (mm°®)
min
4 | | |
[ ]sep04-tau1-2000
c
8 3 L
N
£ _
IS
S 24 -
5
o
<
~ 1 -
z
0 | ‘ } ; .—l_m_l—l_lj I N s s B
0 50 100 150 200 250 300 350 400

96

2
RCSmin (mm?)

Figure 5.9.: Detection rate vs RCS in taul experiments.
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four good points. From the look of the event summary plots, it is obvious that many
highly dubious fits are included by this crude selection method. As we have indicated in
Figures 5.13 and 5.14, vrg is computed in 85-90% of the events. It is not surprising that
the vgr data show more scatter and less structure than the vp data. For instance, the
splitting of the “towards” (v, < 0) and “away” data into two closely separated branches,
very visible in the vp data in the bottom panel of Fig. 5.12, is barely observable in the
corresponding vgrg data in the bottom panel of Fig. 5.14. As of the splitting itself, we
do not know what feature in the target population it corresponds to. Another feature
presumably washed out by measurement errors in vgr data is the concentration of v, > 0
points near the value 3 kms~! around 1000 km altitude in the bottom panel of Fig. 5.11.

Figures 5.15 and 5.16 show radial acceleration, computed by linear fit to the velocity
time series vp(t) when enough data points are available. As we have indicated in the
figures, this happened only in about two thirds of the events. In the figures, we have
also plotted the acceleration value that was used in the detection scans. The values are
represented by the upper edge of the grayed arc, and correspond to circular-orbit and
strictly vertical pointing. The lower edge of the arc is computed assuming the antenna
is pointed towards south, at the elevation actually used, and the target is moving in
circular polar orbit across the beam. In both cases, the rotation of the Earth is ignored,
but nevertheless, the shaded region should be representative of the possible values of
radial acceleration of targets in circular orbits. As in the case of velocity vgr, much of
the scatter of the data points is more likely due to bad fits than the targets actually
being in non-circular orbits.
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Figure 5.11.: Radial velocity vp in the taul data sets.
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Figure 5.12.: Radial velocity vp in tau2 experiments.
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5.5. Velocity and acceleration
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Figure 5.13.: Radial velocity vrpr in taul experiments.
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Figure 5.14.: Radial velocity vrpr in tau2 experiments.
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5.5. Velocity and acceleration
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Figure 5.15.: Radial acceleration ap in taul experiments.
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A. Space debris receiver signal processing

A AID K H(v) Ml

Figure A.1.: Space debris receiver signal processing logical blocks. The EISCAT 7 MHz
wide IF2 bandpass filter (A) centered at 11 MHz is followed by an A/D
converter sampling at 40 MHz, followed by a “Hilbert transformer” 7,
followed by a sampling rate reduction system system which consist of a
decimation lowpass filter H and a decimator M.

The signal handling blocks of the SD receiver are shown in Fig. A.1. We assume that
the only filters we need to take into account are an analog bandpass filter A, the system’s
antialiazing filter, with frequency response A(f), and a digital lowpass filter H, which is
needed in sampling rate reduction (decimation) by a factor of M from rate f1p = 10 MHz
to the final sampling rate fs = fi10/M. The digital filter has a frequency response H (v)
and an impulse response {h;}, where v is the normalized frequency so that the physical
frequency is achieved by multiplying v with the sampling frequency, and the h; are the
coefficients of the decimation filter. In the SD receiver there are M coefficient h;, all
equal to unity (or equal to 1/M if we normalize the impulse response to unit area as is
customary).

The frequency response of a digital filter is, by definition,

H(v)= Z hy, exp(—i2mnv), (A1)

so for the SD receiver we have
|H (v)| = diric(2mv, M) , (A.2)

where diric is the Dirichlet kernel defined in Eq. (3.71).

We assume that in front of the antialiazing filter, the system noise is gaussian, with
system temperature Ty, and power spectral density! G(f) = kT4ys, and that the en-
ergy of signal s(t) at this point is the sought-for energy Wy. After the 6.8 MHz wide
antialiazing filter, centered at 11.25 MHz, the signal is taken to the SD receiver. In
the SD receiver, the signal is first sampled at 40 MHz, to produce a real-valued sample
stream {z,,}. Then a Hilbert transform is performed, to get rid of the positive frequency
component of the spectrum. This is done by generating complex-valued sample stream
{yn} with 10 MHz sampling rate, with real and imaginary part defined as

Re(yn) = 2an — Tan2
Im(yn) = Tant1 — Tants- (A.3)

! Normally, in the literature the noise power spectral density is written as G(f) = 2kTiys. We hope,
but are by no means sure, that the EISCAT system temperature is so defined that the factor 2 does
not enter.
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A. Space debris receiver signal processing

The subtraction operation in Eq. (A.3) removes a possible DC component from the signal
by high-pass filtering. That high-pass filter is so wide that its effect is ignored. After
the Hilbert transformer block, the digital signal is periodic by the sampling frequency
f10, and consists of replicas of the negative frequency part of the original double-sided
spectrum.

The next phase is filtering by the digital lowpass filter H. The baseband component
of this filter has first nulls at ¥ = £1/M in terms of the normalized frequency, or at
f = =£fi0/M = +£fs in terms of non-normalized frequency, here fs is the sampling rate
after decimation. Even though for our most common case, decimation by M = 20,
the antialiazing filter is so wide that its gain can be considered same for all the signal
frequency channels, the gain of the decimation filter affects the different channels by
different amounts. In our most often used experiments, we use two signal channels, one
at fon1 = 10.1 MHz and the other at fa,0 = 9.8 MHz. For these, the decimation filter has
power gain |Hen1 > = |H (fen1/ fi0)> = [diric(27-1.01 20)] = 0.875 and |Haa|? = 0.574.

For the apparent energy E!, of the observed signal s, on a frequency channel, we
have

Ts - |Isiull® = Ely =~ |A(fo)|* - |Haw|* - Een (A4)

where we have made use of the property that the signal spectrum on a given channel is
narrow compared to the width of the decimation filter. That is, the observed energy is
the original energy F.y scaled by the combined power gain of the filters A and H at the

frequency fen.
In filtering, the noise power spectrum transforms by the square of the filter transfer
function. For any digital filter H, the Parseval’s theorem is

0.5
/ | HW)Pdv =) |l (A.5)
—0.5 ;
If we also can assume that the antialiazing filter gain is roughly constant over the width

of the decimation filter, that is,

-1 1

A(v - fio — fio) = A(f10) for v € [M M]

we get for the observed noise power P! at the output of H, and thus also for the power
of the final decimated noise,

Py & kTiys - |A(f10) f102|h . (A.6)

By adding signal energies from all frequency channels, we get from Eq. (A.4) and (A.6)

HS/H2 s Zch’A(fCh)’2|HCh’2Ech/Ts
Pr’; kTsys ’ |A(f10)|2 - f10 Zz |hi|2

(A7)

For the special boxcar decimating filter used in the SD receiver,

1
; hil” = (A8)
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so that

- fio Y |hil* = 1. (A.9)

We write the received signal energy on a channel in term of total received signal energy
as
E = kenEs - (A10)

Using this, and Eq. (A.8), we can write Eq. (A.7) as

”S/H2 ~ Ech |A(fch)|2|Hch|2’€ch B

~ . . A1l
P, ACR)P FToye (411)
Finally, if we can approximate
|A(fen)| = |A(f10)] (A.12)
for all signal channels, we get rid of the antialiazing filter effect alltogether, and are left
with
HS’H2

(Z /ich’Hch‘ ) kTsys (A13)

For example, if the received power divides equally to both of the two channels chl and
ch2 in our standard experiments, (as would not appear unreasonable, but we don’t really
know), the correction term were

Z Fen|Hen|? = (0.875 4 0.574)/2 = 0.72. (A.14)
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B. DSCAN program listing

In the following, we give a somewhat stripped-down listing of the actual DSCAN code (file
name dscan.c). We have removed all error-handling and cleanup code, all timing calls,
all variable declarations and many of the “less essential” call parameters. Otherwise, the
code, including the comments, is the actual C language code that we are currently using.
Comments about the points marked by “nn|” in the listing are given in section 4.2.3 of
the main text, starting on p. 61.

1 11 // Parse the command line

2

3 getpars ( argc, argv, sdeffile, &Autosync, );

4

5 2] // Read scan definition from scandef file

6

7 sid = read_scandef ( sdeffile, )

8

9 3] // Initialize for MF processing

10

11 X = create_gmfsetup ( sid, );

12

13 if ( Autosync )

14 {

15 4] // Synchronize scan start position against an EISCAT
16 // integration period boundary if there are "gaps'",
17 // else synchronize only to next cycle boundary.
18

19 synchronize ( sid, );

20 }

21

22 51 // Open input gstream for scanning

23

24 tau_ns = (long) (sid->tau) * (double)1000;

25 gid = gopen ( sid->filel, "r",

26 sid_timel, sid->offs, , tau_ns, );
27

28 if ( ! Testmode )

29 {

30 6] // Open a hitlist file, and write current scandef to
31 // tt’s beginning.

32

33 hid = fopen ( hitfile, "w" );

34 print_SCANDEF ( hid, sid );

35 }

36

37 71 // An infinite scanning loop. Each pass is one scan.
38 // The scan goes through all the requested ranges 7
39 // and produces the profile, Ratio(r), which

40 // at end of the loop is inspected by a threshold

41 // detector.

42

43 gates_to_do = X->nshifts;

44

45 while ( 1) // SCAN LOOP //

46 {
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B. DSCAN program listing

47 8] // Check that TX rising edge is located as expected
48

49 if ( Synccheck )

50 tx_pos = checksync ( gid, -2, +2, );

51

52 9] // Get data for next integration. "Rawlen" %is the
53 // length of the integration in <integer number of
54 // cycles. An addition, we need to read some

55 // "extra" points if we search targets beyond the
56 // first matching window.

57

58 gread ( gid, X->rawlen + X->nextra, raw->realp,

59 raw->imagp, msg );

60

61 if ( *msg )

62 break; // Typically exzit due to the end

63 // of input gstream.

64

65 10] // Skip over "nskip" points, positioning us

66 // ready for mnext integration.

67

68 gseek ( gid, -(X->nextra) + X->nskip, );

69

70 11] // Estimate TX energy and mean background noise
71 // power for this scan.

72

73 tx_and_noise ( X, raw, noiseshift, &noisepower,

74 &txenergy );

75

76 normalizer = 1.0 / ( noisepower * txenergy );

77

78 12] // In the scan, we compute X->nshifts range gates
79 // r. We compute X->blocksize range gates by a

80 // single call to the gmf() or fastgmf(). The next
81 // loop produces Ratio for the required ranges,
82 // each pass handling one block of ranges.

83

84 while ( gates_to_do > 0 ) // BLOCK LOOP //
85 {

86 if ( gates_to_do >= X->blocksize )

87 ngates = X->blocksize;

88 else

89 ngates = gates_to_do;

90

91 13] // Call the appropriate MF routine to

92 // compute MF weloctity slices, each

93 // of length X->gmflen,

94 // v --> MF(r, v) "2,

95 // for the ngates range gates of the

96 // current block.

97

98 if ( X->usefastgmf )

99 fastgmf ( X, raw, ngates, gateO, gmf2 );
100 else

101 gnf ( X, raw, ngates, gateO, gmf2 );

102

103 14] // Compute Ratio(r_j) =

104 // maz_v { sqrt [ MF"2 / (P_noise * W_tz) ] }
105

106 for ( gate = 0; gate < ngates; gate++ )

107 {

108 g2max = floatmax ( gmf2[gate], X->gmflen,
109 &k_max );
110 *rat++ = sqrt ( g2max * normalizer );

111 }
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112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

gate0 += ngates;
gates_to_do -= ngates;

}// END OF BLOCK LOOP

15] // Now we have all the range gates of the scan
// ready. Do threshold detection.
if ( Dedector ( ratio, X, &RatMax,, &gMax ) > 0 )
{
16] // For hit scans we compute also a velocity
// estimate. To get it, we mneed to
// re-generate the welocity slice that
// goes though the hit’s range gate.
if ( X->usefastgmf )
fastgmf ( X, raw, 1, gMax, gmf2 );
else
gmf_1 ( X, raw, 1, gMax, gmf2 );
g2max = floatmax ( gmf2[0], X->gmflen, &kMax );
Range = gate_to_range ( X, gMax );
Velocity = k_to_veloc ( X, kMax );
hit = 1;
hitcount++;
}
else
{
Range = gate_to_range ( X, gMax );
hit = 0;
}
if ( ! Testmode )
{
171 // Optionally, save to matlab .mat files
// - a piece of rawdata,
// - the Ratio(R),
// - the welocity slice of the MF through
// the maxzimizing R.
}
18] // Report statistics from the scan,

// report and save the hit if any.

save_hit ( hid, hit,

191 } // END OF SCAN LOOP

ratMax,

Range,

Velocity,,,,);
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C. C implementation of the MF algorithm

In this section, we give a simplified listing of the main part of the C code of our imple-
mentation of the MF algorithm, the routine GMF.

© 0 N O G W N

e e e e
® N 3 Uk W NN = O

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

// INPUT:
/7
// X: Pointer to gmfsetup struct, containing work
// arrays and control parameters.
// raw: Pointer to the beginning of rTaw split-complex
// 32+32-bit float data.
// ngates: Number of range gates to handle.
// gateO: Index of the first location to be used from
// the X.shifts[] and X.accl[] arrays.
// Ngates locations are used.
/7
// OUTPUT:
/7
// gmf2: Array of wectors, one wvector per range gate.
// Each vector is a wvelocity
// slice v-->(MF(r, v, acc(r))) "2
void gmf ( ... )
{
// Initialize pointers to the FFT 4input wectors
// FFTIN(r,:), for the mngates range gates. These record
// the current position in each wvector.
for ( gate = 0; gate < ngates; gate++ )
{
fftinpos[gate].realp
fftinpos[gate].imagp =
}
// The nezxzt loop produces the FFT input wvectors
// FFTIN(r,:). We handle data IPP per IPP,
// growing the FFTIN(r,:) wectors "inm parallel”.
// Each vector <s of the form
// FFTIN(r,:) = TX .* RX .* exzp ( -% * acc(r) * n°2 ),
// where TX 4s the IPP’s transmission, shifted
// by shift(r).
for ( ipp = 0; ipp < nipp; ipp++ ) // IPP LOOP //

// Point to transmission samples of this IPP.

tx.realp
tx.imagp =

for ( gate = 0; gate < ngates; gate++ )// GATE LOOP
{

// Fill in zeros inm FFTIN, <n front of

// this IPP’s TX .* RX

memset ( ... );

// Point to the reception samples starting at
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C. C implementation of the MF algorithm

Figure C.1.: Forming the FFT input vector FFTIN in the MF computation routine GMF.
The input vector is the point-wise product of the transmission samples x,,,
which are shifted by the number of samples j given as a call parameter
and complex conjugated, with the reception samples z,,, and with a range-
dependent acceleration term. The integration in this example is over three
IPPs. Both the transmission samples and the reception samples are actually
part of of a single split complex (real and imaginary part stored in separate
arrays rather than interleaved) data vector RAW. Note that RAW must
contain somewhat more data than just the IPPs that cover the integration

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

116

Tc

0 0 [ ] O |_L

fftin

time T¢.

// gate, in this IPP. Note that we actually
// can cross the IPP boundary here, and use
// data from the second and even third

// reception windouw.

rx.realp = tx.realp + shift[gatel;
rx.imagp = tx.imagp + shift[gate];

// Multiply the reception samples by the
// shifted TX. Matlab code:

//  FFTIN(gate,posl:pos2) =

// conj (TX) .* RX

// We use a wvectorized routine

// from Apple’s wDSP library.

zvmul ( &tx,, &rx,, &fftinpos[gatel,, tlen,,);

// Perform acceleration correction, using

// pre-computed, range-specific acceleration
// wvalue. Eq utvalent Matlab code:

// FFTIN(gate,posl:pos2) =

// FFTIN(gate,posl:pos2) .*

// ezp (-i*acc(gate)*(nl1:n2).°2)

acc_correct_gmf ( &fftinpos[gatel,
tlen, accell[gatel],
txon[ipp] + shift[gatel);

// If this is the last IPP, zero-padd
// FFTIN(gate,:) to length fftlen

if ( ipp == nipp - 1 )



86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

108
109
110
111
112
113

memset ( ... )

}Y// END OF GATE LOOP

}// END OF IPP LOOP

// We mow have the FFTIN(1:ngates,l:nfftin) matriz ready

for ( gate = 0; gate < ngates; gate++ )

{
// Perform FFT
// Matlab code:
// FFTIN(gate,:) = fft ( FFTIN(gate,:) )
// Use optimized routine from Apple’s vDSP library.
fft_zip ( fftsetup, &fftin[gate], stride,
log2n, FFT_FORWARD );
// Take gmflen points around the zero frequency, and
// compute squared magnitude.
// Matlab code:
// GMF2(gate,1:gmflen) =
/7 ( abs(FFTIN(gate,...) ) .~ 2
fft2gmf ( fftin[gatel, fftlen, gmflen, gmf2[gate] );
}
return;
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Auxiliary illustrations
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Tromsg site building and the UHF antenna.

Long-leaf Speedwell (Veronica longifolia) by the river Kitinen.
SD receiver console screens in the Tromsg site control room.
External connections of the SD measurement computer.

TX bit output, Tromsg UHF system.

Support beams of Sodankyld UHF antenna counterbalance.
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