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Abstract

It is stated in an often-cited review article that the double-bump character of an IS
ion-line spectrum is due to the Doppler-shift of the radar radiation as it scatters from
upward-going and downward-going ion-acoustic waves.! The size of the shift corre-
sponds to the phase velocity of the wave. The problem with this view is that, unlike
the normal Doppler-shift associated with the bulk motion of the plasma, the primary
scattering objects, the plasma electrons, are not moving systematically with the wave’s
velocity; rather, they can be considered to be at rest. This note tries to clarify, from
a very elementary, qualitative, point of view, what actually is happening. The shift’s
mechanism is simpler than in the standard Doppler-shift. The shift is basically due to
a target-selection effect. The dominant contributions to the reception come from the
locations of density wave crests, and when the phase of the wave changes, different
dominant ranges, with different phase delays, become selected. That is, the targets are
at rest and have zero Doppler, but different sets of targets become selected when the
wave propagates. This causes an extra change of reception phase at the rate of the
angular frequency of the density wave. The note also dwells in detail on the “Bragg-
condition”, or why and when a density wave can enhance the received field in the first
place.

Scattering from a single electron

We are ignoring all characteristics of the radiation except phase, and are considering
only the backscatter situation. We are also considering a smallish volume at a long
range r, so that we will be able to ignore all distance-dependent factors also. We write
the (phase-part of the) electric field at transmission as

E(t) ~ e™raal ey

where wy,q is the radar frequency. We consider scattering from a single electron, moving
at the plasma’s bulk velocity v, along the radar beam so that its range is

R(t) =19+ vpt. (2)

The electric field E(t) at reception is proportional to the transmitted field at a delayed
time ¢/,

E(t) ~ Eo(t') . ()
From the space-time geometry of the situation, Fig. 1, the delayed time is
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!Beynon and Williams, Rep. Prog. Phys, Vol 41, Number 6, 1978, p.917: “If the signal is scattered by an
upward traveling wave it will experience a Doppler-frequency shift: Af = —2V/\ [=...]”



The pulse propagation delay PPD is

2R(t)

PPD=t—t' = .
Up ¢

(5)

The Doppler-shift

We are going to combine at reception electric fields arriving from a set of electrons
within the small volume (in which there is some hope of density waves staying co-
herent). Moreover, apart from the uniform bulk plasma motion with the velocity vy,
we assume the electrons do not not have any systematic motion. Then we can always
choose the time origin so that for the purpose of the phase bookkeeping, the second
term in Eq. (4) can be replaced by 27 /¢, with r being the range at the time of scattering.
The received field from a single electron at distance r becomes, to first order in v}, /c,

E(t) ~ Eo(t/) ~ ei(wrad+wD)t . e*Z’I(T‘7 (6)
where ,
)
WD = _prrad (7)

is the backscatter Doppler-shift, and K is twice the radar wavenumber,

_ 2Wrad _9 27

K
c )\rad

= 2krad - (8)

The phase factor of the received field, Eq. (6), is reasonable. The first term takes care
of the Doppler-motion, the second term, k;oq x 2r, does not depend on the uniform
motion but just represents the total phase change of the (non-Doppler-shifted) radar
wave along its flight path. When we below consider waves of plasma electron density,
we can compute the frequency changes as if the plasma where at rest, ignoring the
common Doppler-term from the equations. That is, when we refer to the density wave’s
phase velocity, vy, we mean the phase velocity in the rest frame of the plasma; the bulk
velocity is taken care by the Doppler-term in Eq. (6).

The value given in Eq. (7) for the backscatter Doppler-shift follows from the scat-
tering geometry and the requirement Eq. (3). A re-derivation of the Doppler-shift, di-
rectly from the geometry of the space-time diagram, is given in the caption of Fig. 2.
Ultimately, the physics of the backscatter Doppler-shift must be justified from Maxwell
equations, but an intuitive explanation is given, for example, in Tuomo Nygren’s book?.
It is stated that the Doppler-shift results from two factors:

(P1) Due to its motion in the radar frame, in its own rest frame the electron hits radi-
ation wavefronts at different rate than if it were at rest. In its rest frame, it emits
radiation with this altered frequency. This gives one factor of “2wy,q to Eq. (7).

(P2) Due to the motion of the radiation source, the distance between the emitted wave-
fronts changes. This gives another factor of %pwrad.

2An unpublished early version of the coming, extended book; not the published book from 1996.



We will show below how the strong semi-coherent scatter that is responsible for the
ion-line (and similarly for the plasma lines) is due to a pattern of spatially varying elec-
tron density. It is not unreasonable to imagine that if the pattern is moving, we should
be able to draw for it a space-time diagram similar to Fig. 2, where the world-line is
the world-line of the pattern and the velocity is the pattern’s velocity vy, which is the
phase velocity of the wave. The frequency-shift follows essentially from the diagram,
so heuristically we expect a frequency shift wy, of the form of Eq. (7), with v, replaced
by vy,.

One can call the wave-related frequency shift wy, a Doppler-shift if one must, but
we clearly cannot apply the argument P1-2 here. The primary scatterers are still the
electrons, but they are not moving with the velocity v, not in any sense of the word.
Worse, we get frequency shifts twy, from a thing that looks even less uniformly-moving
than a traveling wave, namely, from a standing way, such as a plasma oscillation. Of
course, a standing wave is just two opposite-moving traveling waves, so this situation
is only marginally worse. But something else should take the place of P1-2 to illuminate
the physics.

Scattering from a density wave

When there are multiple scattering electrons in the small volume V" of interest, the elec-
tric fields add up to give the (volume’s contribution to the) received field

E(t) ~ ( /V N(r,t)e Erdr) | x et twn)t ©)

where N(r,t) is the plasma rest-frame electron number density. We will call Eq. (9)
the superposition integral in this note. We will only consider wavelike structures of NV
in the beam direction, and will subsequently write the superposition integral only as 1-
dimensional integral in the beam direction. This can be done because any oblique plane
wave (-vector) can be composed into beam-parallel and beam-perpendicular waves.
A plane wave perpendicular to the beam has constant density in the beam direction,
and as we show below, a constant density in beam direction will not contribute to the
received E. So we need only consider beam-parallel structures. These have constant
density in the perp direction, and so the perp direction can be taken out of the integral.

The scattering volume we are considering must be small, of the size of coherence
length of the longitudinal structures. Only then it makes sense to model the density by
a single sinusoid.

The received electric field due to such a coherent structure is a deterministic func-
tion. The actually received electric field at any given time, from the whole illuminated
volume, could be modeled as an incoherent sum of a very large number of such co-
herent contributions, and thus the actually received field must ultimately be modeled
as a random process. The individual contributions to the total field can be assumed to
have roughly similar power spectra. These in turn are essentially the squared moduli of
the spectra (Fourier transforms) of the deterministic E(t), and thus have qualitatively
similar shape to it. For the purpose of this qualitative note, Eq. (9) is good enough.

We ask under which conditions the superposition integral will become large. The
crucial observation is that the exponential factor oscillates rapidly all along the unit
circle. For any sizable volume V/, if N is spatially constant so that it can be taken out of
the integral, the phase factors mostly cancel, and the integral becomes small.



Thus, there is little net backscatter from the volume if the density is nearly constant.
The physical reason is that at any moment of time in reception, there is full destructive
interference along the world-line of the received plane wave, as illustrated by the space-
time diagram of Fig. 3. Thus, it is only density fluctuations 6 N that can produce some
net scattering,

N(r,t) = No+dN(r,t). (10)

Because the plasma ultimately is discrete and its elementary constituents are in ran-
dom thermal motion, the situation when plasma can be said to have a "nearly constant
density”, and to what degree, is both probing wavelength and plasma temperature
dependent. A density that appears constant with one wavelength and one tempera-
ture, will look fluctuating with sufficiently shorter wavelength at that temperature, or
at sufficiently higher temperature when using the same wavelength. This behaviour is
quantified via the Debye length Apepye, Wwhich depends both on the density and on the
temperature, Apehye < \/7T'/N. Inspected with resolution significantly better than the
Debye-length, the elementary scatterers behave truly independently (move randomly).
In this case, the density is always fluctuating randomly, and there will always be some
net scatter. This is the “truly incoherent” scatter, but that scatter is comparatively weak.
It is the truly incoherent scatter that gives rise to the electron line component of the full
IS spectrum when the plasma is studied with short wavelengths.

But with radar wavelengths longer than the Debye-length, it is possible to enjoy en-
hanced scatter, due to suitable non-random density fluctuations. Even without the su-
perposition integral Eq. (9) at hand, inspection of Fig. 3 already suggests the required
arrangement. The sign-changing transmission divides spacetime into “plus” and “mi-
nus” stripes. With constant plasma density, these stripes contribute identically to the
received signal at any given time, and thus cancel each other out. What we therefore
need to do, is to modulate the density in a way matched to the stripes (that is, to the
radar wavelength), so that full destructive interferece no more can occur. One way to
ensure the required density pattern is to impose a time-independent sinusoidal density
variation of wavelength \;,q/2 in the range direction, as shown in Fig. 4.

It is clear from the Fig. 4 and Fig. 5 that the wavelength A, of the fluctuation really
must be matched to the radar wavelength as drawn, via Ay, = A;aq/2. If this is not the
case, the two involved sinusoids either go out of phase, and a messy “beat pattern” of
phase results in any scattering region of space-time, and these phases tend to cancel
each others out. This would occur if the sinusoids are only slightly non-matching as
in Fig. 5 panels (c) and (g). If they are substantially non-matching, then one of these
occur: If the fluctuation varies very rapidly compared to the plus-minus stripes of the
radiation, the fluctuation chops each stripe to many individual plus-minus pieces, and
these cancel each other out. If, on the other hand, the fluctuation is very slowly varying
compared to the radar wavelength, we are back in the constant-density situation, and
there again is not much net scatter.

In real plasma, there are no such frozen fluctuations, but time-dependent fluctua-
tions, waves, occur naturally. In particular, the ion-line is associated with the elec-
tron density fluctuation occurring due to ion-acoustic waves. These are relatively low-
frequency longitudinal electrostatic waves where the displacement from equilibrium is

3The only net scatter there is in the situation of constant density is forward scatter; in Eq. (9) forward
scatter would show up as K = 0, and so the rapid oscillation does not occur. Physically: At reception
in the forward direction all scatterers always add in phase, because all phase paths are of equal lengths.
In all other directions, there will be a full collection of phase path lengths available.



due the thermally generated electron density variations and the overshoot due mainly
to ion mass, so that the phase velocity vy, ~ \/kpT;/m;. There are wavelength-dependent
corrections as well, so the waves are actually dispersive. In typical F-layer conditions,
vy &~ 1000 ms~!, so that at EISCAT UHF with wavenumber k,,q ~ 20 rad m~!, the
matching ion-acoustic wave’s angular frequency is about 40x 103 rad s~ L.

Physics of the the frequency shift when scattering from a density wave

We now come to the crux of this note. Given a wavelength-matched electron density
fluctuation in the form of a traveling wave, what happens in reception? We expect
a frequency shift w,, equal to the Doppler-shift of an object moving with the wave’s
phase velocity. We will derive this result below from the superposition integral. But we
can understand the result qualitatively by referring to the spacetime diagrams in Fig-
ures 4 and 6. Figure 4 suggests a strong connection between the phase of the fluctuation
and the phase of the reception, which we state as proposition P3:

(P3) If, in the spirit of repeated trials, one changes the phase of a frozen fluctuation by
a constant amount throughout the scattering volume, the change shows up in an
equal change in the phase of the received field.

The proposition holds because the reception depends linearly on the fluctuation. That
is, because E(t) = a [, g(t,r)N(t,r)dr, it follows that if N — €N, then E — €/?E.
It does not matter why the phase changes. In principle, it could change because direct
manipulation of the electron density, say by cleverly streaming charges in and out of the
radar beam in a beam-perpendicular direction (an operation which we would normally
not expect to cause any radial “Doppler-shift”). Or we could just create and annihilate
electrons in place. Or, more like the case in point, the fluctuation could change because
there is a longitudinal density wave going through the region, in which case the phase
of 0N (r) at each r changes at the rate w,,, the angular frequency of the wave.

The rate of change of the received field has up to three distinct contributing factors,
each of different physical origin. First, as Fig. 6 illustrates, if the fluctuation is perfectly
frozen, the reception phase anyway changes by the angular frequency wyaq of the trans-
mission. Second, if also the fluctuation is changing, it causes an extra change of phase
in reception, and this change w,, must be added on top of wy,q. And third, if there is
bulk plasma motion, one needs to throw in the Doppler-shift wp of the bulk motion
also.

Derivation of the frequency shift due to a density wave

We inspect the superposition integral in Eq. (9) (now only in radial direction, z). We
note that we get a large value only when the fluctuation JV is able to cancel the expo-
nential factor. That is, it should have a sinusoidal spatial form with a wavelength that
is matched to the radar wavelength by

ON(t,z) = ng(t)eT 5= (11)

with K given in Eq. (8), K = 2k;aq. All other forms would leave a more or less rapidly
oscillating exponential.* The condition Eq. (11) for strong scatter—strong constructive

*The mathematical result behind this rather woolly claim is the Riemann-Lebesgue lemma, which states
that for any fixed interval L and any reasonable f, limx o [, f(2)e'**dz = 0.



interference at reception— resembles the Bragg-backscatter condition of radiation scat-
tering from crystals. For instance, given a radiation wavelength \,,q4, we observe strong
backscatter only if the lattice spacing D is

D= 2md, (12)
2
When inspecting a crystal, one typically would sweep over a range of frequencies to
find what is the lattice spacing. In the radar case, the frequency is more or less fixed for
a given radar, and we say that the radar can only ”see” the target well if the target has
coherent structures with the spatial period given by Eq. (12).

A natural way that coherent periodic structures of type Eq. (11) can occur is longitudi-
nal density wave motion. These may be traveling waves or they can as well be standing
waves. The latter are of sums of traveling waves, moving in opposite directions.

Consider an upward traveling density wave, with angular frequency wy,, of the elec-
tron density fluctuation,

ON = cos(wwt — kwz), (13)

with phase velocity vy, so that
Wy = Ky Uy - (14)

We use an explicitly real-valued plane wave in Eq. (14), instead of e'(“~*=%v2) because
the complex presentation would, a little too conveniently, skip over a complication that
I want to point out. Even though it is right and proper to use a single complex wave
(here the radar wave) in linear equations in place of the actual physical wave, the situ-
ation is not clear-cut if one needs to multiply the waves.

We know from Eq. (11) that for this wave to cause strong signal at reception, it must
have a wave number about twice the wavenumber of the radiation, so we require

ky ~ K. (15)

What is the frequency of the received electric field? We write § NV of Eq. (13) in terms of
two complex exponentials and insert into the superposition integral Eq. (9), giving

E(t) ~ /[ei(wwt—sz) +e—i(wwt—sz)]e—iszZ « e(w—l—wD)t (16)
L
_/ei(kWJrK)de « ei(erwDerw)t
L
+/e+i(kW_K)Zdz x elwtwp—ww)t 17)
L

%/Le—&—i(kw—K)de « ei(w—l—wD—ww)t‘ (18)

To get Eq. (18), we used Eq. (15) to drop the first term of Eq. (17) in comparison to the
second. We conclude from Eq. (18) that the up-going wave leads to an extra downward
frequency shift, in addition to the Doppler-shift due to bulk plasma motion, by the
amount equal to the wave’s angular frequency wy,, which from Eq. (14), (15) and (8) can

be written as 5
w
Wy = ide. (19)
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By comparison with Eq. (7), the received field due to the upward moving wave has a
frequency shift as if the radiation would have reflected from a plasma body moving
uniformly with the phase velocity of the wave.

To get Eq. (18) from Eq. (17) we dropped the term containing a “fast varying” complex
exponential exp(—i2K z) in the integral. This seems to make sense, but why do we have
such a term in the first place—the term would give a frequency shift of size w,, but in
the “wrong” direction? The integral is trivially evaluated (as in Eq. (20), below), and
then one notices that if the interval of integration L becomes infinite, or if L is a multiple
of the matching wave-length \/2, the integral vanishes without approximation. Does
it mean that the term somehow corresponds to “edge-effects”? Or does it mean that
the situation here is even more like mixing of a (complex) signal with a real mixing
frequency, where both the up-shifted and downshifted mixing results do occur, but the
unwanted mixing result is filtered out. In amplitude modulation, one normally gets
two “sidebands”, shifted away from the carrier by the modulation frequency, so maybe
that is what happens here also, but I don’t really know what to make out of this in
physical terms.

In Eq. (18) the Doppler-shift wp and the shift associated with the wave motion wy,
combine to a total shift Aw = wp + wy. The total shift corresponds to the velocity
vp + Uy, the total phase velocity of the wave in the radar frame of reference.

Broadening of the spectral line

We have explicitly written the superposition integral to be over only a finite interval, L,
because otherwise we cannot assume a coherent fluctuation. Of course, this is equiv-
alent of writing the integral over infinite range, but using a boxcar cutoff function for
the fluctuation. Physically, the cutoff correspond the wave being strongly damped. Ei-
ther way, due to the finite interval of integration, the wavelength matching requirement
needs be fulfilled only approximately. That is, there is a whole collection of fluctuation
wavenumbers ki around K = 2k,,q that give reasonably strong net constructive inter-
ference at reception. The shorter wave coherence length Lx we have, the larger set of
wavenumbers near K will be able to contribute to the signal.

Conversely, we can use the known shape of the ion-line to try to get on order-of-
magnitude estimate on how large the typical damping distance might be. Very roughly,
we imagine a typical double-bump spectrum of total width B to have the bump-centers,
which presumably correspond to the exact-matching frequencies fwy,, at positions
+B/4. We evaluate the superposition integral Eq. (18) for a fluctuation of wavenumber

ki, of length L, to get
|'sin[(k1 — K)L1/2]|

E(t; k)| ~ 20
’ ( ) 1)| |]{31 —K‘ ( )
This has the first zero at k; such that |k; — K| = %7{, or
k o 1 /2
Mg 2m L Awal2 1)
K 1 K L4

From the shape of the spectrum, we conclude that the contributing wavenumbers £
extend, very roughly, from zero to about as large as 2K. This requires the coherence
length to be quite short, L1 < Arad/2, or

L1 S 1 x /\match(K) . (22)



That is, the density fluctuations must damp quite fast, within the size of the matching
wavelength. This appears to be consistent with what we get by computing the decay
half-time of the wave amplitude from a suitable Landau-damping formula, like the
formula 5.96 of Bellan®. In typical ionospheric-F conditions at EISCAT UHF we find a
decay half-time of about one wave period for all values of T; /7, between about 1 and
6, as Fig. 7 shows.

Scattering as a filtering operation

When considering scattering from a density fluctuation it is possible to compute the re-
ceived signal via a filtering operation. To realize that the superposition integral Eq. (18)
in fact is a convolution integral, requires only a change of variable. The filtering pic-
ture brings no new physics, of course, but provides a handy way for computing the
superposition integral, as we have done in Fig. 6.

One only needs to change from the radial variable z to an associated time variable ¢’
via z = §t' = £t/, to get

E(t) ~ / eiklzei(wthz)dZ w e~ iwit (23)
L
_ C/ ikt giw(t—t') gyt o q—iwit (24)
2 /2L

c

The integral in Eq. (24) is a convolution integral of type [ h(t')z(t — t')dt/, where the
filter h is

h(t) = e'2kit (25)
which, taking into account the finite interval of integration, is a narrow-band band-
pass, or notch-, filter, with the notch at position of the fluctuation frequency (c¢/2)k;.

We now (for good or ill) re-cast the message of the previous section into the filter-
ing picture. How narrow the filter passband is, depends on how large the coherent
structure is. The larger L, the narrower is the notch, becoming a delta-function when
L — inf. But when L is not large, the passband has some finite width, proportional to
1/L, as implied by Eq. (20).

The finite passband implies that there is a whole collection of the density-fluctuation
filters, of wavenumbers k; around the wavenumber 2k,,4, with a passband that con-
tains the radar frequency, and so can contribute to the received field. Each filter brings
with it its associated “mixing frequency” w; which translates the filter output from wyaq
to Wrad + w1. We conclude that the spectrum £(w) of E(t) originating from the small
volume of coherent scattering, displays a continuous collection of frequencies around
Wrad T w1.

More formally the “collection” means a Fourier decomposition of the fluctuation,
so that the relative weight of a particular wavenumber £; in the collection is the spa-
tial finite-volume Fourier-transform 6N (¢, k1) of the fluctuation field § N (¢, r) computed
over the volume. The spectrum £(w) thus corresponds to the temporal Fourier trans-
form, 6N (w, k), of SN (¢, k). When incoherently summed over whole illuminated vol-
ume, the 0V (w, k) becomes the overall plasma fluctuation power spectrum, the random
variable central in the IS theory.

5Paul M. Bellan: Fundamentals of Plasma Physics, 2008, Cambridge University Press.



Discussion

The double-bump IS ion-line spectrum is due to scattering from a large number of
short-duration, short-extend, wave-length matched, ion-acoustic density waves, both
upgoing waves and downcoming waves. The bumps are concentrated on the frequen-
cies that are shifted, down and up, from the radar frequency by the frequency of the
density wave. Wavelength-matching density fluctuation is required to get strong con-
structive interference at reception, but, for the rather short individual waves, the match-
ing needs not be very precise, and so a whole spectrum of wavelengths around the
exactly-matching wavelength can contribute significantly to the received field.

To get enhanced scattering only requires a matching fluctuation; from that point of
view, the fluctuation could as well be frozen. But if the fluctuation is actually a wave, a
frequency shift result. The main point of this note has been to stress that the mechanism
of the frequency shift is not the same as that of the normal Doppler-shift. In the normal
Doppler-shift, the scatterers, the individual electrons, experience different acceleration
when the electrons are moving with respect to the radar than when they are not. This
is not the case when the scattering is due to a density wave. From the point of view of
the primary scatterers, a density wave is not equivalent to a beam of particles moving
with the phase velocity.

A density wave is not even equivalent to the frozen fluctuation starting to move, as
a “block”, with the phase velocity. In a sinusoidal density wave, the mean (thermal
motion averaged out) motion of the scatterers is longitudinal harmonic oscillation with
the wave frequency, and with velocities that per see have nothing to do with the phase
velocity of the wave. The frequency shift by the wave frequency obviously is not due
to this harmonic motion, which averages to zero.

Even though the scattering “due to the wave” ultimately is due to the scattering by
the essentially stationary electrons, it is best to forget about the individual scatterers and
zoom out to view the plasma as a fluid, and describe the situation in terms of the density
fluctuation. Then, we could model the scattering of the radar wave from a density wave
like this: When a density wave moves through the a few wavelengths wide scattering
region, the small sub-volumes act like amplitude modulators, the amplitude just rep-
resenting the number of electrons in that volume. The modulators are initially phased
to produce a frozen sinusoidal fluctuation through the scattering region, and then the
density at each sub-volume starts varying harmonically. When the scattering region
is illuminated by the radar wave, each sub-volume acts like a amplitude-modulated
tiny transmitter. Due to the initial phasing of the transmitters, either an upgoing or
down-going pattern of transmitter phases results, depending in which direction (+wy,
or -wy) the harmonic oscillation occurs. The received signal is the summed-up signal
from these transmitters. This model is a direct hardware realization of the superposi-
tion integral with a density of type N4(t,2) =1 + Acos(Kz + wyt).

The modulator spectrum has a DC component and sidebands at +wy,. This spectrum
is then shifted (mixed) by the radar carrier frequency wr,q. But we have seen that when
the transmitted waves from the elementary trasmitters interfere at reception, for the
upward going density wave pattern the “Bragg-condition” strongly favours w = wyaq —
wy, suppressing the carrier (DC-component) and the w;aq + wy component.

In this picture of the scattering there is no place for the electrons themselves emitting
any Doppler-shifted radiation (apart from the plasma bulk Doppler-shift). The fact
that the frequency shift w, nevertheless numerically equals the Doppler-frequency shift



computed by assuming that a wavefront of the density wave behaves like a beam of
particles moving with the wave phase velocity, may seem almost coincidental, but of
course, is not.

What happens is that the net scattering comes from the sub-volumes were most of
the scatterers are, that is, from a density wave crests. For the sake of simplicity, we
may imagine that those are the only places that radiate at all. At any moment of re-
ception, the scattering is so arranged that radiation from all the crests add with equal
phase at reception. So consider some particular crest as if it would be the only scatterer.
The phase at reception resulting from scattering through that volume can depend only
on the total phase path length from the radar transmitter to the scattering volume and
back. The crest acts as kind of marker for the volume where most of the scattering is
coming. When the crest moves, even though the scattering particles don’t move, with
the phase velocity of the wave, the phase path through the contributing scattering re-
gion changes, precisely in the same way as when a bunch of particles were moving with
the crest. We have shown that the rate of change of the phase path length determines
the size of the frequency shift for the scattered field, so it is clear that the frequency shift
value must be the same in both cases.

I acknowledge that sensible people can disagree with me on this, but I maintain that
just to be able to calculate the size of the frequency shift from the phase path change
is not the whole story. In case of the normal Doppler-shift, descriptions P1-2 on p.2
clearly provide additional insight into the phenomenon. In case of scattering from the
wave, there is less physics to explain. Perhaps the main thing to explain is that there
really is not much more to explain. The primary scattering from the wave is the same
kind scattering from the electrons as with the normal Doppler-shift, the scattering now
having a Doppler-shift zero.

The observed frequency shift arises due to target-switching, not due to target mo-
tion. I have suggested proposition P3 (p.5) as a way to summarize the effect. The key
observation is that the overall phase of the fluctuation—the locations of wave crests—
determines, or selects, from which sub-volumes the dominant, “phase-determining”,
contributions to the received field come at a given moment of reception. The range to
the volume has significance, because it determines the overall phase delay of the recep-
tion with respect to transmission. When the contributing range, say, becomes larger,
the received signal inherits its phase from relatively further and further back in time,
as shown in Fig. 8. This introduces on extra change of phase, at the rate of the density
wave’s angular frequency, on top of the baseline change that occurs simply because
the transmitted phase changes. That extra change is responsible for the frequency shift
associated with the density wave.

Of course, with the wave-organized, semi-coherent scattering, calculating the fre-
quency shift is not the main thing. The interesting issue is explaining the nature of the
waves themselves, in various physical circumstances, and how this shows up in the
detailed shape of the IS spectrum. That is were the actual physics of IS is.
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Figure 1: The delayed time. The space-time diagram shows the world-line of an scat-
tering object moving away from the radar with velocity v, and the world-line
of some specific phase front of the electric field. The delayed time ¢’ is solved

. ¢ /
from the equation 5tc = ro + v 5.
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Figure 2: Doppler-shift. The space-time diagram shows an electron moving at velocity v
away from the radar, and two radar wavefronts, 360° apart in phase, reflected
from it. The Doppler-shift AX can be solved purely from the geometry, using
triangles in the green-coloured area of which an enlarged and annotated copy
is shown at the top of the diagram. We use unit such that ¢ = 1. Then there are
enough 45° angles, 90° angles, and parallelograms around, for the following
to hold: AB = A\, BD = CD = A)/2, CE = )\/2. The velocity is v =
AR/At = CE/AC, so that v/c = (AMN/2)/(A + AX/2). Solving this for AX
gives A\ = 2) (v/c)/(1—v/c) = 2Av/(c—v) . Interms of frequency w = 27wc/ A,
this becomes wp = (¢ — v)/(c + v)w, in consistency with Eq. (4) and Eq. (7).
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Figure 3: Constant density does not give any net scatter. The figure shows world-lines
of constant phase associated with the scattering events that contribute to the
received field E at the time ¢;. In the continuous-density picture, we image
the target divided into very small volumes §V;, within the scattering volume V'
(which itself also is assumed small), and in each 6V, we imagine one scattering
event. The up-going legs of the world-lines corresponding to the crests and
throughs of the outgoing wave are shown with red and blue lines respectively,
the remaining world-lines are indicated by the coloured zones. The scattering
events contributing to E(t), at the vertex of their world-lines, are located on
the green-coloured area of the space-time diagram. A scattering event n gives
a contribution 6, to the received field that is proportional to the number of
electrons in the volume 0V}, (the number inside the small square), times the
phase factor e’*" that the volume picks from its associated world line (circled
plusses and minunes, and more generally, the pink sinusoid drawn along the
scattering region). The received field E(t;) is the sum of the contributions
dE,,. With constant density (of value “2” in the illustration), the contributions
§E,, are essentially just the phase factors e'*, and these sum up to zero, apart
from edge effects within a single wavelength. In the diagram, there actually is
a net scattering of size “2”. In general, the wave coherence volume V' may be
small enough so that the edge effects couldn’t be totally ignored, but we will
nevertheless do so; the whole discussion is highly non-quantitative anyway.
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Figure 4: Effect of the initial phase of a frozen fluctuation. The panels are identical apart
from the phase of the fluctuation, which changes by 7/2 from (a) to (b) and
again from (b) to (c). The phase of the received field changes precisely by the

same amount.
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Figure 5:
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Matching and non-matching, frozen, fluctuations. The figure shows the in-
tegrand of the superposition integrand I = [, N cos(—Kz)dz, for differ-
ent fluctuation wavenumbers k. In the top row of panels, the density
N = 1+ 0.5cos(¢ — kyz) is shown as gray-coloured surface, the phase of
the transmission cos(—Kz) as green-black dashed line, and their product as
blue(=negative) and red(=positive) line. In the bottom row of panels, the fluc-
tuation 0N = 0.5cos(¢ — kyz) is used instead of the density N itself. The
quantity « is the ratio of the fluctuation wavenumber to the ideally-matching
wavenumber K = 2k,,q. The value F is the value of the superposition integral
divided by the ideally-matched value, E = I(ky)/I(K). The range interval L
is 4 X Apaq in all panels.
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Figure 6: Scatter from a frozen fluctuation. Construction of the signal for the time ¢;

was shown in detail in Fig. 4.a; this figure shows the construction at the time
to, half a period later. At all contributing spacetime points, the phase of the
radar field has progressed by m between ¢; and t;. Therefore, the phase of
the received field has changed by the same amount, and so the reception has
changed from “+4” to “-4”. In general, the phase of reception tracks the phase
of transmission without any frequency shift. The only effect of the fluctuation
is to enhance signal strength. To compute the shape of reception E(¢) in de-
tail, it is convenient to view E(t) as the output of a filtering operation where
the filter is the fluctuation and the transmission Ey(t) is the signal. In this ex-
ample, the transmission is 3 periods long, and the fluctuation 2 periods long.
Only one period of undistorted, maximal amplitude signal is received, from
t1 to t3; the rest of the 5 periods long reception has reduced amplitude.
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Figure 7: Damping of ion-accoustic waves. The top panel shows the attenuation co-
efficient a = 27r|°:j—::‘ in ON(t,z) ~ e79P x eilwwt=K2) of o Landau-damped
ion-accoustic wave, as a function of 7t /T;, for typical ionospheric F-peak pa-
rameters at EISCAT UHF. The bottom panel shows the decay half-time ¢, , of
the wave amplitude in terms of the wave period P, as function of 7, /7;. In
typical ionospheric condition, the ion-acoustic wave propagates only of the
order of one wavelength.
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Figure 8: Frequency shift due to looking progressively further back in time. We con-
sider some particular wave-crest of an outgoing density wave. The position
of the crest tells from where the dominant, phase-determining, contribution to
the reception comes. We consider two reflections of radar signal from layers
of stationary electrons, at ranges R4 and Rp, marked by that wave-crest. The
tirst reflection is received at time ¢4, from range R4. The signal has the same
phase as the transmitted wave had at the time ¢’y = t4 — 2R 4/c. We have here
chosen that phase to be zero ( the “red” phase). We have chosen to take-in the
second signal at time ¢p, precisely one period, P;,q of the transmitted wave,
later. If the density fluctuation would be frozen, this signal would again be
coming from range R4, and would have started its journey at t/; + P,,q (the
dashed line). With the traveling wave, the signal is still coming from the posi-
tion of the density wave crest, but now from a larger range, Rp ~ Ra+vy Prad-
Because of the longer pulse flight time, the signal we receive at ¢p inherits its
phase from the time t; = ¢/; — 0 P, the time of the “blue” phase. The diagram
indicates that at ¢, hence at ¢ 5, the first full period is not yet completed, so the
period at reception is longer than the period of transmission. It follows from
the geometry of the diagram that, for v, < ¢, the change 6P of the signal
period between transmission and reception is, as expected, 0 P ~ (2vy/¢) Praq-
We note that the overall situation here is quite different from the case of nor-
mal Doppler-shift, where we would have a single layer moving from R4 to
Rp. Due to their motion, the electrons in that layer would actively change the
characteristic of the radiation, causing the Doppler-shift. In the present case,
radiation coming from layers R4 and Rp separately, has zero Doppler-shift,
and the perceived frequency shift is due to the observer seeing a different sta-
tionary target as the time goes on.
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