
TARLAN HEAT VERSION 2.0

May 2011 JM

1 Introduction

This document is about next major version of the Heating tarlan-compiler, version 2.0.
The latest version in the 1.x series is 1.6. The new version brings only a few changes
that are visible to the user, but internally, the compiler has been changed quite a lot.
The new compiler is in a separate directory in the EROS tree, the canonical location
being /kst/eros5/dsp/tarlan/tarlan_heat_v2. The Makefile there installs the
version 2 compiler to /kst/eros5/bin/with the name /kst/eros5/bin/tarlan_
2.0.

The version 2 compiler must still be considered experimental, and the EROS tarlan
command for Heating still calls the version 1.6 compiler, /kst/eros5/bin/tarlan_
heat, which is compiled from sources in /kst/eros5/dsp/tarlan/tarlan_heat/.
Even though the intention is that the binary code generated by the version 2 compiler
will very closely resemble the code generated by the 1.x compiler, the tbin and rbin
binaries (referred together as “xbin” here) from the two compiler versions are quite
different. That is because, in addition of the executable code that is actually loaded to
RC memory, the xbin also contains a header part, and this has now been changed drasti-
cally. Moreover, there are also small changes in the executable code, as one of the main
motivations for a new compiler version was to correct the few cases where the old com-
piler generates wrong code. Most especially, the TXSYNC and RXSYNC commands
should now produce the expected 2 µs pulse whenever the commands are used. There
are one or two other changes also, see the beginning of Section 4 in this report. Note
that the version 2.0 does not yet implement the changes that might, or might not, be
needed in connection of the Heating frequency drift problem.

These xbin changes mean that one cannot simply use some binary-comparison com-
mand like cmp to verify that the new compiler generates “correct” code. Moreover,
the changes in the xbin header are large enough so that the current EROS loadradar
command will not accept the binaries generated by the new compiler. I plan to update
the loaders only sometime later in the summer.

To make possible testing of the 2.0 compiler against the old compiler and the present
version of loadradar, the version 2 compiler can operate in 1x-compatibility mode. In
this mode, the version 2 compiler uses the old xbin header format, so the files can be
loaded in EROS, and also the code changes are kept to a minimum (only the known
bugs are fixed). At present, the compatibility mode actually is the default mode. The
mode can always be turned on explicitly using the compiler option -1. Once the testing
is considered complete and the loader is updated, the default mode will be changed
to native mode. At the present, the native mode must be explicitly enabled using the
compiler option -2.

To inspect the headers of the binaries, one can use standard Unix facilities like the
hexdump program (not available in all our Suns), but the new compiler’s home direc-
tory contains also a a small new program, xbin_reader, that can read and decode to
the screen both the old and the new headers.

1

This document is partly a description of the new features, both internal and external,
and partly a verification document for the correctness of the generated code. Section 2
explains the new features. Section 3 contains example compilations of a test program,
done both with the old compiler, and with the new compiler in the compatibility mode,
to verify code correctness. These runs seem to show that the 2.0 compiler is able to
generate code correctly. Section 4 shows compilations done with the new compiler in
native mode, to illustrate the new header format. The format is explained in detail in
Section 5. Section 6 shows a compilation speed test done with a large source file.

One of the main benefits of the new header format is that it gives better support for
xbins which contain multiple programs, and also, that it provides means to transmit
“metadata” automatically from a tlan source file to EROS. These features appear useful
enough so that all our tarlan compilers could benefit of an update to the new header
format. I reckon that this can be done rather quickly, without making much change to
the compiler internals otherwise. It perhaps does not make much sense to update the
EROS part until all our tarlan compilers can generate the new headers.

2 What’s new in 2.0

Internal features

For version tarlan_heat_2.0, the tarlan compiler has been internally re-organized.
The compiler is still, of course, based on the highly efficient lex/yacc compiler gen-
erator that Assar started using long time ago, but the tlan file compilation is now ar-
ranged to be done in two passes per each program in the source file, instead of a single
pass. Also the compiler’s internal data structures have been simplified by using 64-bit
variables for all AT-time related quantities and for the RC-code words themselves. For
definitiveness, we now also use explicit storage size specifications like uint64_twhen
declaring any variable who’s bit size does matter.

These changes result in significant simplification and clean-up of the compiler’s in-
ternal logic and bookkeeping, and therefore make adding new commands both simpler
and safer. Not to speak about allowing us robustly kill some old, known bugs.

However, the two-pass compilation results in marked reduction, by up to about a
factor of three, of the compilation speed, and also results in larger memory consump-
tion. A speed test done by compiling /kst/hfexp/edmim/375Hz.tlan, one of the
largest Heating tlan files currently in use, is shown in Tables 15 and 16. With the
2.0 compiler, this worst-case compilation which produces a tbin of about 16 000 in-
structions long, takes about 540 ms on s2501 (Sodankylä site’s ancient Sun Ultra-250
Sparc), and takes about 47 ms on a 2 GHz Intel MacBook. The older compiler version
tarlan_heat_1.6 is about three times faster, giving compilation times 170 ms and
19 ms, respectively.

The loss of speed is lamentable, and while there might exist possibilities for some
performance optimization, I don’t believe that the old speed can be regained. On the
other hand, 0.5 s is not a very long time during the experiment preparation phase,
and the new compiler is so much simpler internally that I’m inclined to accept the
performance penalty.1

1But 500 ms is long enough that I’m, for the time being at least, dropping my idea of letting EROS always
(re-)compiler the tlan source files at load time. This would have been a robust way to enforce tlan-xbin
consistency, which currently is not checked at all.

2

The 2.x compilation steps are the following.

1. First, one uses lex/yacc to generate two Bit Operation Tables”, one for RX, the
other for TX. Both of these tables contain 4-element records with

a) required at-time of the bit operation as a 64-bit integer

b) operations’s unique sequence number

c) code bit number 0...63 (no separation between ”high” bits and ”normal in-
struction bits” 0...31 any more).

d) the value to be set for that bit number at that time, either 0 or 1. 2

It is now very simple to handle tarlan commands that generate pulses, and it does
not matter when that pulse should happen. One just generates two bit operations
for the required times relative to the current AT-time, corresponding to the lead-
ing and trailing edge of the pulse. In the 1.x version the biggest trouble was to
keep track on the overall time ordering when pulses were present. I never man-
aged to do that correctly in tarlan heat 1.x for the towards-the-future going
RXSYNC and TXSYNC pulses. Now the whole ordering business is postponed
to the time where it properly belongs, namely, when all bit operation times are
available.

2. Phase (1) proceeds until lex/yacc finds an end-of-program instructions (REP).
Then the Bit Op Tables are used for code-generation for that program, separately
for TX and RX. The code is appended to two Code Tables, one for RX, the other
for TX.

a) The first job in code-generation is to order the Bit Op Table to increasing AT-
time order based on (1.a). In case when there are several operations at the
same AT-time, which is normal, one uses the sequence number (1.b) as an
additional criterion to get unambiguous, natural ordering. The ordering of
the records uses quicksort, and is implemented by a single invocation of the
qsort() routine of the standard C-library.

b) Once the bit operations are in their natural time order in the Bit Op Table, a
simple for-loop generates the executable RC program to the Code Table, by
applying the bit operations one after another to the current 64-bit RC-word.
(The initial word is the default RC-word.) As soon as the loop finds that the
bit-operation AT-time increases, the current word is completed by assigning
the dwell-time bitfield, and then the word is appended to the Code Table.
Buildup of the next word then commences. The for-loop executes until all
bit-operations in the Bit Op Table are processed.

c) After the program’s executable is ready, the compiler also stores various aux-
iliary info like the REP, the number of instructions, duty cycles, program
name, etc., to Program Info Table, to be used for the construction of the xbin
header once all programs in the file have been processed.

d) After the header info is saved, compiler counters are reset and execution
moves to (1) to start compilation of the next program in the file.

2In compiler 1.x, one uses the bit-operation “flip the current bit value”. We could do that very simply
here also, but I prefer an explicit assignment.

3

Once the tarlan source file comes to an end, the Code Tables and the Program Info
Table are used to generate the output xasc and xbin files. This may also require re-
ordering of the 64-bit program code words to the big-endian byte order used by the
RC.

New features visible to the user

Apart from TXSYNC and RXSYNC now compiling correctly, the visible changes from
1.x to 2.0 are mostly, but not entirely, cosmetic.

1. The 2.x compiler is source code case-insensitive, that is, the compiler does not care
at all about the character case of commands. This is achieved by using the GNU
flex tokenizer, with the flag -i, in the Makefile, instead of the older lex (which
does not support -i).3

2. The 2.x compiler allows also white space as command separator when there are
multiple commands in a single AT line. In 1.x, a comma is required between
commands (but white space allowed in addition to the comma).

3. The 2.x compiler only requires that the AT-time does not decrease from AT-line to
AT-line. But it can stay the same.

4. The 2.x compiler allows many, but not all, commands to have the special AT-time
of zero. This means that one can in effect modify the default RC words in the tlan
file. Now, as earlier, the first command at non-zero AT-time must be at AT-time
0.3 or larger, or, if the command results in a pulse, the pulse must not start earlier
than 0.3.

5. The programs in the tlan file can now have symbolic names. To that purpose,
there is a new command, PROG <progname>, that must be placed either before
the very first AT-line of the source file; or between a REP-line and the next AT
after an REP. That is to say, the PROG <progname> line must not be placed “in
the middle of a program”. <programe> must start with a non-numeric character,
can only contain A-Z, a-z and 0-9 and an underscore, and has max length of 32
characters.

The given <progname> is saved in the xbin header for each program in the file,
and thus is made automatically available to EROS. If one does not give an explicit
name, name prog N is automatically generated for the N’th program.

6. There are some trivial changes to error messages and warnings. For instance, the
compiler now complains about missing STC, BUFLIP, STFIR only if at least one
channel is explicitly used (there is a CHn command) in the program.

An example illustrating the new face-lifting possibilities of source file such as the file
test1_1x.tlan of Table 4, is shown as the file test1.tlan in Table 1. Please note
that I definitely am not recommending using all those features in normal coding. The
old, more fixed format is clean and concise, and has much to be recommended. But
now the choice is on the tarlan programmer.

3Which of course requires that flex is available, which is not the case at present in most of our Solaris
machines. Must be installed from http://www.sunfreeware.com/.

4

Table 1. File test1.tlan. This file requires tarlan heat 2.x to compile. There are three
programs in the file. The first two programs have explicit names, the last one will be
given the name prog 3 by the compiler. Prog Long: Commas and spaces are used to
visually group together functionally similar commands. I would also argue that using
lower-case letters in the commands makes numbers in commands like stmct3&4 a
little easier to read. There are now several commands at the earlier forbidden AT-time
0. And uninhibited use is made of RXSYNC and TXSYNC, which should work correctly
now. Prog Medium: Receiver commands are in one column and transmitter commands
in another column. Several commands having the same AT-time are placed to different
code lines. prog 3: The old format is sooo charmingly from the sixties, isn’t it?�
PROG Long
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a t 0 txsync , rxsync psavoff
a t 0 . 4 s rxp1on , rxp2on stmcm1&2, stmct1 &2, stmct3 &4, stmct5&6
at 0 . 5 s rfon∗
a t 0 . 6 s r f o f f ∗ rxp1off , rxp2of f
a t 1 . 0 s psavon

s e t t c r 5 s
a t 0 txsync , rxsync psavoff
a t 0 . 4 s rxp1on , rxp2on updm1&2,updt1&2,updt3&4,updt5&6
at 0 . 5 s rfon∗
a t 0 . 6 s r f o f f ∗ rxp1off , rxp2of f
a t 1 . 0 s psavon

s e t t c r 0
a t 10 s rep

PROG Medium
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

AT 0 rxsync TXSYNC
At 0 . 4 s t f i r STMC∗ PROFSEL1

at 0 . 4 ncosel100
a t 0 . 4 c h l 1 r 2

AT 0 . 5 ncoprs
AT 10 rxp2on RXP1ON
AT 100 RFON∗
AT 110 FLP∗
AT 120 NOFLP∗
AT 600 UPD∗
At 1000 RFOFF∗

a t 1000 rxp2of f RXP2OFF
at 1000 rxsync TXSYNC

AT 2000 ch∗
AT 8000 ch∗ o f f
AT 9998 b u f l i p
AT 9999 s t c
AT 10000 Rep

% An unnamed program . Wil l be
% named as prog 3 by the compiler .
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
AT 0 . 4 STFIR ,STMC∗ ,RXSYNC,TXSYNC
AT 1000 REP�

5

Table 2. Compiling the file test1.tlan of Table 1 with tarlan heat 2.0, native mode. Note
that native mode (option -2) is not required for the compilation itself to succeed, but
here we want to produce the new, version 001, xbin headers.�
> t a r l a n h e a t 2 . 0 −vv −a −2 t e s t 1 . t l a n
Prog 1 (Long) : RX sa=0 len =17 bi top =43 TX sa=0 len =19 bi top =59
REP= 10 000 000 .0 us RFduty =2.0 %

AT 9999 .0 STC : Channel on−t imes s i n c e l a s t STC : CH1 6000 .0 CH2 6000 .0
Prog 2 (Medium) : RX sa =17 len =17 bi top =45 TX sa =19 len =15 bi top =67
REP= 10 000 .0 us RFduty =9.0 %

Prog 3 (prog 3) : RX sa =34 len =7 bi top =11 TX sa =34 len =7 bi top =23
REP= 1 000 .0 us RFduty =0.0 %

Parsing : 1 2 . 8 ms Codegen : 0 . 0 ms F i l e w r i t e : 1 . 0 ms Tota l : 1 5 . 1 ms

. r a s c => t e s t 1 . r a s c

. t a s c => t e s t 1 . t a s c

. rb in => t e s t 1 . rb in

. t b i n => t e s t 1 . t b i n�

Table 3. Decoding the header of test1.tbin from the compilation of Table 2.�
> xbin reader t e s t 1 . t b i n
f i l e = t e s t 1 . t b i n

time = 28−May−2011 0 0 : 0 3 : 3 7
vers ion = 1
r c i d = HOTtx
nprog = 3
prog header s ize = 80 bytes
t o t h e a d e r s i z e = 280 bytes
t o t c o d e s i z e = 328 bytes

prognum = 1
name = Long
sa = 0
len = 19
rep = 10000000 .0 us
r f d u t y = 2 . 0 %
beam duty = 2 . 0 %

prognum = 2
name = Medium
sa = 19
len = 15
rep = 10000 .0 us
r f d u t y = 9 . 0 %
beam duty = 9 . 0 %

prognum = 3
name = prog 3
sa = 34
len = 7
rep = 1000 .0 us
r f d u t y = 0 . 0 %
beam duty = 0 . 0 %�

6

3 Compatibility mode

The test program test1_1x.tlan, shown in Table 4, is a minimal modification of the
file shown in Table 1. The file uses almost all commands supported by tarlan heat.
Only bit-operators like SBTX1 (set bit) and CBRX2 (clear bit) are not there, and neither
are RXSYNC nor TXSYNC. This file can be compiled both with tarlan_heat_1.6
and tarlan_heat_2.0, allowing correctness check of the compiler version 2.

Table 4. File test1_1x.tlan. This test file can be compared also with the version 1.x
compiler. Compared to test1.tlan of Table 1, we can’t now use AT-time 0, which
makes the two 5-second sections of the the first program unnecessarily non-symmetric.
Also, we need to remember that some source characters, like the ”m” in STMCm1&2,
and the ”s” in some AT-times, must be in lower-case. And we can’t use the PROG to
name the programs.�
% F i r s t program
AT 0 . 3 PSAVOFF
AT 0 . 5 s RXP1ON,RXP2ON, STMCm1&2,STMCt1&2,STMCt3&4,STMCt5&6
AT 0 . 6 s RFON∗
AT 0 . 7 s RFOFF∗ , RXP1OFF , RXP2OFF
AT 1 . 0 s PSAVON
SETTCR 5 s
AT 0 . 3 PSAVOFF
AT 0 . 4 s RXP1ON, RXP2ON, UPDm1&2, UPDt1&2, UPDt3&4, UPDt5&6
AT 0 . 5 s RFON∗
AT 0 . 6 s RFOFF∗ , RXP1OFF , RXP2OFF
AT 1 . 0 s PSAVON
SETTCR 0
AT 10 s REP

% Second program
AT 0 . 5 STFIR , STMC∗ , PROFSEL1 , NCOSEL100 , CHL1R2
AT 0 . 7 NCOPRS
AT 10 RXP2ON, RXP1ON
AT 100 RFON∗
AT 110 FLP∗
AT 120 NOFLP∗
AT 600 UPD∗
AT 1000 RFOFF∗ , RXP2OFF , RXP2OFF , RXSYNC, TXSYNC
AT 2000 CH∗
AT 8000 CH∗OFF
AT 9998 BUFLIP
AT 9999 STC
AT 10000 REP

%Third program
AT 0 . 4 STFIR , STMC∗ , RXSYNC,TXSYNC
AT 1000 REP�

7

Table 5. Compiling the file of Table 4 with tarlan heat 1.6.�
> t a r l a n h e a t 1 . 6 −vv −a −o t e s t 1 1 x o l d t e s t 1 1 x . t l a n
Warning : no STFIR
Warning : no STC
Warning : no BUFLIP
Prog 1 : RX sa= 0 len= 16 TX sa= 0 len= 16 REP= 10 000 000 .0 us

AT 9999 .0 STC : Channel on times s i n c e l a s t STC : CH1 6000 .0 CH2 6000 .0
Prog 2 : RX sa= 16 len= 17 TX sa= 16 len= 14 REP= 10 000 .0 us

Prog 3 : RX sa= 33 len= 7 TX sa= 30 len= 7 REP= 1 000 .0 us

Parsing : 1 1 . 4 ms t o t a l : 1 2 . 6 ms

. r a s c => t e s t 1 1 x o l d . r a s c

. t a s c => t e s t 1 1 x o l d . t a s c

. rb in => t e s t 1 1 x o l d . rb in

. t b i n => t e s t 1 1 x o l d . t b i n�
Table 6. Tbin header from the compilation of Table 4. The header does not provide
info about the three individual programs in the file. The 1.x compiler does not compute
rf-duty cycle, leaving, the rf-duty field is zero (compare to Table 8).�
> xbin reader t e s t 1 1 x o l d . t b i n
f i l e = t e s t 1 1 x o l d . t b i n

time = ?
vers ion = 0
r c i d = HOTtx
nprog = 1
prog header s ize = 100 bytes
t o t h e a d e r s i z e = 100 bytes
t o t c o d e s i z e = 296 bytes

prognum = 1
name =
sa = 0
len = 0
rep = 0 . 0 us
r f d u t y = 0 . 0 %
beam duty = 0 . 0 %�

Table 7. Compiling the file of Table 4 with tarlan_heat_2.0, compatibility mode.�
> t a r l a n h e a t 2 . 0 −vv −a −o tes t1 1x new t e s t 1 1 x . t l a n
Prog 1 (prog 1) : RX sa=0 len =16 bi top =39 TX sa=0 len =16 bi top =55
REP= 10 000 000 .0 us RFduty =2.0 %

AT 9999 .0 STC : Channel on−t imes s i n c e l a s t STC : CH1 6000 .0 CH2 6000 .0
Prog 2 (prog 2) : RX sa =16 len =17 bi top =43 TX sa =16 len =14 bi top =65
REP= 10 000 .0 us RFduty =9.0 %

Prog 3 (prog 3) : RX sa =33 len =7 bi top =11 TX sa =30 len =7 bi top =23
REP= 1 000 .0 us RFduty =0.0 %

Parsing : 1 1 . 3 ms Codegen : 0 . 0 ms F i l e w r i t e : 1 . 0 ms Tota l : 1 3 . 5 ms

. r a s c => tes t1 1x new . r a s c

. t a s c => tes t1 1x new . t a s c

. rb in => tes t1 1x new . rbin

. t b i n => tes t1 1x new . t b i n�

8

Table 8. Tbin header from the compilation of Table 7. The compatibility mode uses the
classic xbin header format (version=000), and can’t provide for multiple programs. As
a small improvement, the 2.x-compiler computes the RF-duty cycle for all programs.
The classic header has place only one value, and the value shown in the header is for
the first program.�
> xbin reader tes t1 1x new . t b i n
f i l e = tes t1 1x new . t b i n

time = ?
vers ion = 0
r c i d = HOTtx
nprog = 1
prog header s ize = 100 bytes
t o t h e a d e r s i z e = 100 bytes
t o t c o d e s i z e = 296 bytes

prognum = 1
name =
sa = 0
len = 0
rep = 0 . 0 us
r f d u t y = 2 . 0 %
beam duty = 0 . 0 %�

Table 9. Byte-by-byte comparison of tbin headers from compilations of Tables 5 and 7.
The only difference between the two tbins is in the 100-byte header, where the 2.x com-
piler has placed the non-zero RF-duty cycle of RC prog 1.�
> hexdump −Cv t e s t 1 1 x o l d . t b i n
00000000 52 41 44 2d 43 4 f 4e 54 00 00 01 28 48 4 f 54 74 |RAD−CONT . . . (HOTt |
00000010 78 20 30 2e 30 00 00 00 00 00 00 00 00 00 00 00 | x 0 . 0 |
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000060 00 00 00 00 00 4 c 4b 3e 7 f f7 3 f 80 00 00 00 00 | LK> . . ? |

> hexdump −Cv tes t1 1x new . t b i n
00000000 52 41 44 2d 43 4 f 4e 54 00 00 01 28 48 4 f 54 74 |RAD−CONT . . . (HOTt |
00000010 78 20 32 2e 30 00 00 00 00 00 00 00 00 00 00 00 | x 2 . 0 |
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000060 00 00 00 00 00 4 c 4b 3e 7 f f7 3 f 80 00 00 00 00 | LK> . . ? |�

9

4 Native mode (option -2)

tarlan heat 2.0 in native mode uses xbin header format 001, which properly sup-
ports multiple programs in the same file, and also adds the REP-time parameter, a
generation-time time-stamp, symbolic program names, etc, to the header.

Also the generated code changes slightly from version 1.x. First, the 0.1µs UPD and
STMC pulses now start at the specified AT-time, instead of ending at that time. Second,
RXSYNC and TXSYNC work correctly, generating a 2 µs pulse starting at the specified
time.

Table 10. Compiling test1_1x.tlan with tarlan_heat_2.0, native mode. Com-
piling with option -2 enables version 001 xbin headers, and also results in small changes
in the generated code.�
> t a r l a n h e a t 2 . 0 −vv −a −2 −o test1 1x new2 t e s t 1 1 x . t l a n
Prog 1 (prog 1) : RX sa=0 len =16 bi top =39 TX sa=0 len =16 bi top =55
REP= 10 000 000 .0 us RFduty =2.0 %

AT 9999 .0 STC : Channel on−t imes s i n c e l a s t STC : CH1 6000 .0 CH2 6000 .0
Prog 2 (prog 2) : RX sa =16 len =17 bi top =43 TX sa =16 len =14 bi top =65
REP= 10 000 .0 us RFduty =9.0 %

Prog 3 (prog 3) : RX sa =33 len =7 bi top =11 TX sa =30 len =7 bi top =23
REP= 1 000 .0 us RFduty =0.0 %

Parsing : 1 1 . 3 ms Codegen : 0 . 0 ms F i l e w r i t e : 1 . 0 ms Tota l : 1 3 . 5 ms

. r a s c => tes t1 1x new2 . r a s c

. t a s c => tes t1 1x new2 . t a s c

. rb in => tes t1 1x new2 . rb in

. t b i n => tes t1 1x new2 . t b i n�

10

Table 11. Decoded tbin header from the compilation of Table 10.�
> xbin reader tes t1 1x new2 . t b i n
f i l e = tes t1 1x new2 . t b i n

time = 27−May−2011 1 5 : 0 2 : 0 6
vers ion = 1
r c i d = HOTtx
nprog = 3
prog header s ize = 80 bytes
t o t h e a d e r s i z e = 280 bytes
t o t c o d e s i z e = 320 bytes

prognum = 1
name = prog 1
sa = 0
len = 17
rep = 10000000 .0 us
r f d u t y = 2 . 0 %
beam duty = 2 . 0 %

prognum = 2
name = prog 2
sa = 17
len = 15
rep = 10000 .0 us
r f d u t y = 9 . 0 %
beam duty = 9 . 0 %

prognum = 3
name = prog 3
sa = 32
len = 8
rep = 1000 .0 us
r f d u t y = 0 . 0 %
beam duty = 0 . 0 %�

Table 12. Hexdump of the 280 byte tbin header from compilation of Table 10. The
version 001 xbin header block starts with a 40-byte master header, after which there are
80-byte program headers, one for each program in the file. The header contains both
ASCII strings and binary numbers, the latter being in big-endian byte order (MS byte
first).�
00000000 52 41 44 2d 43 30 30 31 48 4 f 54 74 78 00 00 00 |RAD−C001HOTtx . . . |
00000010 00 00 00 03 00 00 00 50 00 00 01 18 00 00 01 28 | P (|
00000020 4d e0 27 ed 00 00 00 00 52 41 44 2d 43 30 30 31 |M. ’ RAD−C001 |
00000030 48 4 f 54 74 78 00 00 00 00 00 00 10 00 00 00 00 |HOTtx |
00000040 70 72 6 f 67 5 f 31 00 00 00 00 00 00 00 00 00 00 | prog 1 |
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000060 00 00 00 00 05 f5 e1 00 40 00 00 00 00 00 00 00 | @ |
00000070 40 00 00 00 00 00 00 00 52 41 44 2d 43 30 30 31 |@ RAD−C001 |
00000080 48 4 f 54 74 78 00 00 00 00 00 00 0e 00 00 00 10 |HOTtx |
00000090 70 72 6 f 67 5 f 32 00 00 00 00 00 00 00 00 00 00 | prog 2 |
000000 a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
000000 b0 00 00 00 00 00 01 86 a0 40 22 00 00 00 00 00 00 | @ ” |
000000 c0 40 22 00 00 00 00 00 00 52 41 44 2d 43 30 30 31 |@ ” RAD−C001 |
000000d0 48 4 f 54 74 78 00 00 00 00 00 00 07 00 00 00 1e |HOTtx |
000000 e0 70 72 6 f 67 5 f 33 00 00 00 00 00 00 00 00 00 00 | prog 3 |
000000 f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
00000100 00 00 00 00 00 00 27 10 00 00 00 00 00 00 00 00 | ’ |
00000110 00 00 00 00 00 00 00 00 | |�

11

5 Xbin header, version 001

The “classic” 100-byte, version 000, xbin header starts with the 8 bytes ”RAD-CONT”.
The new header format, version 001, starts with the 8 bytes ”RAD-C001”. Subsequent
versions will also have version number encoded as RAD-C<nnn>. The new header
format addresses some problems of the classic header:

1. The new header adds support for multiple programs in a single file.

2. The new format adds parameters needed by EROS (and some utilities), which up
to now must have been found with separate programs like get rep, which have
got that info by reading the whole xbin binary.

3. The new format allows adding ”metadata” to the header for EROS use. As a first
example, there can now be symbolic program names in the header, which EROS
can automatically extract when the xbin is loaded by loadradar.

The new header is no more of fixed length, but the length info is partly encoded
directly to the header itself. This should make it relatively easy to append new per-
program parameters to the header, without the need to immediately update all pro-
grams that make use of the header. That is, on old client programs written for header
version N can also read headers of higher version N+m, just by reading only that piece
of the header it knows about. The length information in the header allows it to skip
over the unknown parts.

12

Table 13. Master header of xbin version 001. The master header is located in bytes
0–39 of the xbin file. C-code to produce the master header in tarlan heat 2.0 is
the routine write xbin header() in the file /kst/eros5/dsp/tarlan/tarlan_
heat_v2/tarlan.y. For C-routines to interpret the header, see /kst/eros5/dsp/
tarlan/tarlan_heat_v2/xbin_reader.c.�

1 . Header vers ion RAD−C001 8 bytes − char array .
2 . Rc id5 (l i k e ”HOTtx”) 8 bytes − char array .
3 . Number (K) of programs in f i l e 4 bytes − big endian u i n t 3 2 t .
4 . Byte s i z e (N) of each prog header 4 bytes − big endian u i n t 3 2 t .
5 . Code ’ s byte o f f s e t in f i l e 4 bytes − big endian u i n t 3 2 t .
6 . Tota l code length in bytes 4 bytes − big endian u i n t 3 2 t .
7 . Unix time stamp 4 bytes − big endian u i n t 3 4 t .
8 . Reserved 4 bytes − big endian u i n t 3 4 t .�

Table 14. Per-program header of xbin version 001. Each per-program version 001
header is 80 bytes and these are placed in consecutive locations immediately af-
ter the master header in the xbin. C-code to produce the per-program header in
tarlan heat 2.0 is the routine xbin header() in the file /kst/eros5/dsp/
tarlan/tarlan_heat_v2/tarlan.y. For C-routines to interpret the header, see
/kst/eros5/dsp/tarlan/tarlan_heat_v2/xbin_reader.c.�

1 . Version 8 bytes −−− char array ”RAD−C001”
2 . Rc id5 8 bytes −−− char array ”HOTtx” or ”HOTrx”
3 . Prog s i z e in 8−byte words 4 bytes −−− big−endian u i n t 3 2 t
4 . Prog RC s t a r t address 4 bytes −−− a big−endian u i n t 3 2 t
5 . Prog name 32 bytes −−− char array
6 . REP in 100 ns u n i t s 8 bytes −−− big−endian u i n t 6 4 t
7 . RF dutycycle in % 8 bytes −−− big−endian double
8 . Beam dutycycle in % 8 bytes −−− big−endian double�

13

6 Compilation speed

Table 15. Compilation speed on an Intel MacBook. As of May 2011, the longest tlan
file in /kst/hfexp was edmim/357Hz.tlan, with about 6500 lines of source code,
consisting mainly of UPD*, RFON*, RFOFF*, RXSYNC and RXP commands. Compi-
lation results in about 16 000 TX instructions and involves more than 130 000 bit oper-
ations on the TX side. The table shows compilation done on a 2 GHz dual core Intel
MacBook in 64-bit mode. The first compilation uses the version 2.0 compiler and takes
47 ms total, the latter uses the 1.6 compiler and takes about 19 ms, so the overall speed
loss is by a factor of 2.5. According to top, the amount of resident memory in the 2.0
case is about 3800 kBytes, and about 700 kBytes in the 1.6 case.�
macbook:> /kst/eros5/bin/ t a r l a n h e a t 2 . 0 −vv −o 375Hz /ks t/hfexp/edmim/357Hz . t l a n
Prog 1 (prog 1) : RX sa=0 len =18 bi top =21 TX sa=0 len =16259 bi top =136507
REP= 18 200 000 .0 us RFduty =25.0 %
Parsing : 2 8 . 6 ms Codegen : 1 6 . 2 ms F i l e w r i t e : 1 . 2 ms Tota l : 4 7 . 0 ms
. rb in => 375Hz . rbin
. t b i n => 375Hz . t b i n

macbook:> /kst/eros5/bin/ t a r l a n h e a t 1 . 6 −vv −o 375Hz /ks t/hfexp/edmim/357Hz . t l a n
Warning : no STFIR
Warning : no STC
Warning : no BUFLIP
Prog 1 : RX sa= 0 len= 18 TX sa= 0 len= 16259 REP= 18 200 000 .0 us
Parsing : 1 7 . 3 ms t o t a l : 1 8 . 7 ms
. rb in => 375Hz . rbin
. t b i n => 375Hz . t b i n�
Table 16. Compilation speed on SOD site’s ancient Sun Ultra-250 SPARC. The version
2.0 compilation in this case takes about 540 ms, while with version 1.6 compiler, the
time is shorter by a factor of about 3, 170 ms.�
s2501 :> /kst/eros5/bin/ t a r l a n h e a t 2 . 0 −vv 357Hz . t l a n
Prog 1 (prog 1) : RX sa=0 len =18 bi top =21 TX sa=0 len =16259 bi top =136507
REP= 18 200 000 .0 us RFduty =25.0 %
Parsing : 258 .9 ms Codegen : 275 .7 ms F i l e w r i t e : 5 . 1 ms Tota l : 541 .2 ms
. rb in => 357Hz . rbin
. t b i n => 357Hz . t b i n

s2501 :> /kst/eros5/bin/ t a r l a n h e a t 1 . 6 −vv 357Hz . t l a n
Warning : no STFIR
Warning : no STC
Warning : no BUFLIP
Prog 1 : RX sa= 0 len= 18 TX sa= 0 len= 16259 REP= 18 200 000 .0 us
Parsing : 169 .3 ms t o t a l : 174 .4 ms
. rb in => 357Hz . rbin
. t b i n => 357Hz . t b i n�

14

