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1 Introduction

This article describes the operation of the EISCAT digital receiver in a self-contained
manner. Apart from leaving out �nite word length e�ects, the description is also fairly
complete. That was not the original aim when I started the writing. My original purpose
was just to explain the origin of a certain odd disturbance in the EISCAT UHF experi-
ment “quip” that I carried out together with my Finnish colleagues in May ����. That
there is something to explain is not in doubt: if one expects data like in Fig. �, but �nds
data like in Fig. �–�, an explanation is called for.

In Chapter �, after this Introduction, I give an account, from a quite personal point
of view, of the puzzle I encountered when I started inspecting the quip data; and of the
resulting period of confusion; and about how my EISCAT colleagues and I �nally came
to an understanding about what was happening. I have told the story with the student�
in mind. Those believing that technical writing and stories mix badly, might want to
skip to Chapter �.

It turned out that in order to quantitatively explain what was happing in the digital
receiver, I had to review the basics in the theory of digital signal processing, such as
sampling, �ltering, frequency translation and decimation, both in the time domain and
in the frequency domain. I’m not entirely happy with the way the basics of digital signal
processing are sometimes formulated, with dimensionless frequencies (unphysical), z-
transformations (unnecessary), �lter design (even more so), many pages devoted to FFT
(unwarranted), and so on. Here I have aimed for a concise, elementary presentation
that is readily and quantitatively applicable to the EISCAT digital receiver, but does not
contain much extra.

I present what I need from the signal processing theory in Chapters � (energy sig-
nals) and � (noise-like signals), starting from the sampling theorem of energy signals,
and �nishing with the decimation theorem of noise and the concept of noise equivalent
bandwidth. In these two Chapters I either prove�, or at least justify, the results that re-
late to the digital signal processing. The few results about analog signal processing that
are needed to discuss the e�ect of the anti-aliasing analog �lter are given without proof.

My notation, especially in frequency domain, is slightly non-standard. Most often in
theory presentation, people use the dimensionless angular frequency ! ⇤ 2⇡ f / fs as
their variable of choice. This does not matter much in practice as long as one has only
a single relevant sampling frequency fs to account for, but can become confusing in
multi-rate context, and when one needs to handle systems containing both digital and
analog parts. I prefer to work explicitly with the physical frequency f throughout—
unphysical as that might strictly speaking be in the digital domain—and have written all
the formulas accordingly. In the radar context, digital signal processing is, as Clausewitz
would have quipped, “merely the continuation of analog signal processing by other
means”. In that spirit, I do not do z-transforms either, but work exclusively with Fourier
transforms.

For ful�lling my original aim, explaining the disturbance in the quip experiment,
it would have been su�cient to handle only narrow-band deterministic signals; basi-
cally, sinusoids; the stu� of Chapter �. But during writing, I revisited a ���� paper by

� Such as a student in the EISCAT radar school.
� Of course, only in the normal carefree way of elementary physics, without paying attention to anything

related to existence, elegance, convergence, and so on. However, I try to make it clear which of the
equations are de�nitions and which are results.

�



Wannberg et al. in Radio Science on the EISCAT Svalbard radar, a paper where I’m one
of the many co-authors. I realised that I was unable to make full sense of the very piece
of the paper—a drawing of the ESR receiver—which contained my sole contribution.

I now think it is clear that the part in the drawing concerning the digital receiver is
not entirely correct. There are two problems. One is related to a line in the drawing said
to represent “�lter shape”; the other is related to the functional block diagram of the
receiver. Instead of just stating what and why is problematic, I use the issue as a pretext
to give a rather lengthly discussion about the consequences of having decimators in the
system. With the ESR system, multi-rate digital signal processing was introduced into
EISCAT for the �rst time. When re-reading the paper, I got the feeling that at that time
we perhaps were not fully appreciating the conceptual implications.

I present in Chapter � a detailed analysis of the function-level operation of the
HSP����� decimating digital �lter that forms the core of the digital receiver hardware.
This is partly in order to provide a proper functional block diagram of the digital re-
ceiver, to replace the one in Wannberg at al., and partly to provide a quantitative basis
for solving the quip disturbance problem. Part of the HSP����� operation is based on
the so-called CIC, or Hogenauer, �lter structure. My exposition of that interesting struc-
ture is more detailed than that in, say, the Wikipedia.

One reason of handling also noise-signals in this article is to acquire a quantitative un-
derstanding on how the “background spectra”, casually shown in the EISCAT real-time
displays during incoherent scatter experiments, relate to the actual shape of the digital
�lter (once that shape has been properly de�ned). For decimating �lters in general, and
the �lters in current operational use in EISCAT in particular, the noise spectrum can
di�er signi�cantly from the shape of the �lter power response, for often there is as a
signi�cant amount of noise aliasing. The predicted noise spectra of several �lters cur-
rently in operational use in EISCAT are shown. One day, I may test those predictions
against actual data.

The decimating digital �lters that are used in EISCAT experiments have all been de-
signed by a Matlab script called ddfplan.m, which I wrote a long time ago to quickly
get something usable for the �rst ESR experiments. I have never documented precisely
how the �lter that is produced by the script relates to the �lter hardware. The discussion
in Chapter � underlines that the relation is not self-evident, because the decimating �l-
ter hardware contains six �nite impulse response �lters, �ve in�nite impulse response
�lters, and an untold (yep) number of decimators. How those can be replaced by a
single equivalent �lter plus a single equivalent decimator, as the design script does, is
explained in this article. The equivalent �lter is used in GUISDAP incoherent scatter
analysis suite via my script get_impresp.m. I have something to complain about that
practice, too.

The reason for the “disturbance” in the quip experiment is explained qualitatively in
Chapter �, and quantitatively in Chapter �. The reason is not any kind of malfunction, or
external disturbance. Instead, the observed behaviour is an orderly manifestation of the
properties of the digital receiver, when the system is pushed near its bandwidth limits.
The disturbance became visible in quip because that experiment was the �rst one where
anyone tried to increase the receiver’s �nal sampling rate beyond the 2.5 Msamples per
second that had been successfully used so far. After all the hassle that resulted from
the e�ort to produce a really wide-band �lter, it would be nice to �nish the article in
the Summary with a de�nitive statement about the maximum usable sampling rate.
Unfortunately, the answer must be that “it depends”. A rate of 5 Msamples/s can be
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achieved. The usefulness probably depends on the intended use of the data, and the
cleverness of the data analysis.

The article contains �� illustrations. I have placed them all together, after the main
text. This is only partly due to my editorial laziness. All the �gures are referred to from
the main text. But I have also tried to make them rather independent of the main text,
and it should be possible to make sense of them without referring to the main text. On
several occasion, the �gures and their captions provide details that are not covered in
the main text. It should be possible to get a reasonably good idea about the contents of
this article just by lea�ng through the Figures.

2 An oscillating disturbance in the experiment quip

In May �–�, ����, the Finnish-Norwegian special experiment quip was used to test 4-
phase phase coding at EISCAT UHF radar for the �rst time. In the test, several di�erent
code sets are transmitted, including both 4-phase codes and binary phase codes. Apart
from the di�erent phase codes and di�erent sampling arrangements needed to record
voltage-level data, the experiment was based on Ingemar Häggström’s beata experi-
ment. Both ion-line and plasma-line data were taken, using multiple receiver channels.
In particular, channel 1 was for ion-line data, recording samples at 1 MHz rate. The
�lter b���d�� was used to con�gure channel � for the required factor of 15 sampling
rate reduction, or decimation, from the 15 MHz A/D primary sampling rate to the �nal
1 MHz rate. The �lter was expected to function without trouble, for I had used it during
several previous experiments.

It is nowadays routine in EISCAT to record “transmission samples”. The transmitted
waveform is probed just before it leaves the antenna and the captured voltage is fed to
the analog receiver, so that it traverses essentially the same signal path as the actual radar
echo signal. That signal is then handled by the digital receiver as any other signal. The
resulting voltage-level data are referred to as the transmission samples. Transmission
samples of a 4-phase code on channel 1 were as shown in Fig. �. These data indeed were
as expected.

When inspecting the beata source �les during preparation of the quip experiment, I
had learned that IH uses three receiver channels to cover the plasma line. These channels
use the decimation 6 �lter b���d� to achieve a 2.5 MHz sampling rate. In UHF beata, the
channels 3, 4 and 5 are tuned 2.4 MHz apart from each other. I did not quite understand
this con�guration. The nominal 3 dB width of the b���d� �lter, ±800 kHz= 1600 kHz,
appeared in the low side for covering the 2.4 MHz distance from channel to channel.�
But more puzzlingly, why would this �lter be functioning at all?

Since the introduction of the digital receiver channels to EISCAT, via the “channel
boards”, at ESR in the ����s, it has been common knowledge that the fastest sampling
rate we can achieve is 1.6 MHz (decimation 9), because otherwise the decimating �lter’s
internal speed speci�cations are violated. I thought that my �lter-design program ddf-
plan.m (Listing �) actually checks that the speci�cations given in the Intersil HSP�����
decimating digital �lter’s data sheet� are respected. How could IH squeeze a 2.5 MHz

� When preparing the experiment, I did not quite realise how slowly the EISCAT digital �lters actually
die o� in the stop band. The b���d� �lter is exceptionally narrow for its sampling rate, and it still has
��% of its maximum gain left at a frequency �.� MHz away from the centre of the �lter, in the middle
point between two plasma line channels.

�https://www.intersi�.com/content/dam/Intersi�/documents/hsp4/hsp43220.pdf
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sampling speed out of those devices?
When I executed the latest version of ddfplan, with the parameters required to create

the b���d� �le (the parameters are documented in the �lter �le), the program imme-
diately complained about too small decimation value, as it should. Inspecting into the
mess, I found that at the time when the b���d� �le that IH was using had been gener-
ated, the o�cial ddfplan program in EISCAT CVS had had a bug and had not been able
to catch the speed violation. But the beata experiment had been performed many times,
and the “illegal” decimation=6 �lter had therefore been in standard use, without any
harmful e�ects being noticed. Assar Westman concluded that the speed speci�cations
given in the �lter’s data sheet probably simply were too conservative.

It appeared that we were allowed to breach the �lter speed limit without consequences,
and encouraged, I decided to push the luck further still. After changing the speed traps
in ddfplan.m from errors to warnings, a little experimentation in Tromsø before the quip
campaign showed that decimation down to three appeared to work; at least one got a
sensible looking output stream when using a sinusoidal analog input signal. Decima-
tion 3 corresponds to 5 MHz sampling rate, so this looked like a signi�cant improvement
over the 2.5 MHz achieved in beata. I also wanted to make the �lter’s 3 dB width to be
near the “ideal” value half of the sampling rate, that is, about 2500 kHz. My solution for
plasma-line sampling for the quip campaign was the �lter b����d�. That would cover
an almost 5 MHz wide frequency band, so that a single plasma line channel would be
enough. In quip, digital receiver channel 4 is used for the plasma-line sampling. That
channel takes its input data from a plasma-line dedicated analogue receiver path, which
has a built-in frequency o�set compared to transmission, and therefore, does not see the
transmission sample data. To record the transmission samples with the 0.2 µs resolu-
tion, one of the available standard (non-o�seted) channels, channel 3, was reserved for
that purpose.

During the May �–� campaign runs, everything appeared to go smoothly by the quick-
look monitoring which just displayed the raw data, though I wondered a little why the
transmission samples on channel � (Fig. �) looked “noisy” compared to channel � data
(Fig. �). But the main concern in the campaign was to verify that the new 4-phase phase
shifter hardware was working, and by the look of the transmission samples on the re-
altime display, that seemed to be the case. So I only realised that there were serious
problems when I started to look at the data more closely immediately after the run.

Channels 1 and 3 (as well as the channel 2 which is used for gain calibration in beata
and quip) process data from a same A/D converter. Fig. � shows how the same trans-
mitted pulse that is presented in Fig. � with 1 MHz sampling on channel 1, appears on
channel 3 with 5 MHz sampling. When zooming-in to the high sampling rate data as in
the top two panels of Fig. �, it became evident that the power and phase variation was
mostly not noise but actually a rather regular periodic disturbance.

The spectrum computed from the zoomed-in segment, the bottom panel of Fig. �,
shows that in addition of the expected DC component, the transmission sample data
had a component also at about 200 kHz. This component was down by about 28 dB
from the DC component.

Unfortunately I did not produce spectrum plots like that in the bottom panel of Fig. �
in the initial analysis. Such plots clearly show the presence of two distinct frequencies
in the data. Rather, for several days after the experiment, I was only working with the
time-domain data; and I became quite confused. I noticed that the data in the top two
panels of Fig. � had very nearly the frequency of 200 kHz, but I had no clue about what
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that would mean. Some other characteristics of the oscillating disturbance are given in
the caption of Fig. �.

Remember, there were new hardware in the signal path in the experiment, the new
phase shifter. Perhaps the new hardware somehow was responsible for the disturbance.
But the disturbance appeared to have so low frequency that if it was some external
signal, present already in the A/D’s analogue input, it should have been able to pass
through the channel 1 �lter, too, and should have been visible also in the channel 1
data. Those data, after all, were computed literary from the same primary 15 MHz A/D
samples as the channel 3 data. On the other hand, I could not understand how the
sinusoid-looking disturbance could be an external signal, for a sinusoidal analog sig-
nal, after quadrature detection, should result in the complex signal A exp(i!t) which
has constant power (such as the clearly DC-level signal on channel �). Very confusing. I
totally failed to appreciate that I was dealing with two di�erent frequencies in the data.
Mike Rietveld, to whom I described the oscillating disturbance during the weekend
May ��–�� in Tromsø, immediately remarked that to him this felt like some kind of beat
phenomenon. That remark in the latest should have kicked me into the correct track of
reasoning, but didn’t.

During the weekend, other oddities in the data became apparent. In any given recorded
data dump, there were multiple radar cycles with numerically identical data. I men-
tioned the problem to AW during a phone call in the weekend. The next week, he was
able to identify, and then solve, the problem as being due to my attempt to transfer too
much data. In the worst-case version of the quip experiment, three channels were sam-
pling at the 5 MHz sampling rate (almost) continuously, and in addition, one channel
sampled continuously with 1 MHz. AW found out that the program that is responsible
for transferring data from the receiver output bu�ers to the process computer, could no
more handle the resulting data rate. The program occasionally did not actually fetch
new data from the channel output bu�er. Instead, it delivered old data from its internal
bu�ers, but failed to give any explicit warning. This problem turned out to be unrelated
to the oscillating disturbance, and I mention it here only because it was an additional
source of confusion during an already bad time.

When discussing these problems with the Tromsø site sta� on Monday ��th May, it
was agreed that more, and more varied, data was needed. We decided to vary the trans-
mission frequencies; to switch on and o� the control signals of the new phase shifter;
to change channel �lters; and to switch the channel hardware (the channel boards) be-
tween the channels. We also decided to test the digital receiver just by feeding a pulse
train from a signal generator directly to the A/D input. At that time, the reason for the
repeating data was not yet understood, but by luck, I had anyway reduced the number
of the wide-band channels from three to one. This data rate can be safely transferred, so
quip version v�.�, which was used in the tests on ��th May, was free from the data-�ow
problem.

I did the additional tests on the ��th May together with Stian Grande, with the rest of
Tromsø site sta� peeking into the experiment control room occasionally for discussion.
Our main observations during the tests were the following.

• Removing the phase-�ip control signals going from the radar controller to the �-
phase phase shifter removed the phase coding as expected, but did not change the
oscillations in any obvious way.

• Switching hardware between channels did not have any e�ect.
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• Of the �lters tried, only the �lter b����d� seemed to have the oscillation problem.

• When using the signal generator to emulate non-phase-coded transmission, the
oscillation was still there more or less similarly as what we got when removing
the phase shifter control signals.

• When the transmission frequency, and the corresponding channel tuning frequency
(the setting of the channel’s numerically controlled oscillator, NCO), was F�� (cor-
responding to NCO frequency 10.1 MHz), the oscillation had a frequency of 200 kHz.
With F�� (10.4 MHz), the oscillation frequency increased to 800 kHz, and also
the amplitude of the disturbance, both in terms of power, and in terms of phase
variation, increased, as is shown in Fig. �. With F�� (10.7 MHz), the oscillation
frequency again chanced, now to 1.4 MHz, and again the amplitude of the distur-
bance increased.

The �rst four items convinced us that the disturbance must be related to the new
wide-band �lter, but what could be wrong with it? The last point in the observation list
provided the crucial clue. It shows that the disturbance is closely tied to the transmis-
sion rather than being some independent external signal, or a signal generated by some
malfunction within the �lter itself. But what could the connection between transmission
and the disturbance be?

As I have already mentioned, we did not have spectral plots like the bottom panel of
Fig. � or Fig. � available at that time. We had only the time series data, and we tried to
estimate the disturbance periods from the real-time display raw data plots by the eye.
I did the initial period-to-frequency conversion with Matlab, and managed to get that
calculation wrong, adding to the confusion. Fortunately SG did not believe my numbers,
but used a calculator in his smartphone to do the conversion. This gave the frequencies
listed in the last bulleted item above. So we had an increase from 0.2 MHz to 0.8 MHz
to 1.4 MHz when the transmission frequency was changed from F�� to F�� to F��. Then
Arild Steinberg also came to chat about the results. He noticed that the change of the
transmission frequencies Fn was in steps of �.� MHz, and observed that the change of the
disturbance frequency therefore was two times the change of transmission frequency.

Only then did the number two �nally register in my mind as something important. Up
to that point, I had tacitly assumed that what ever the source of the problem was, it was
a single source only. But now I became convinced that a single source simply could not
possess this many properties. There must be more than one source of the disturbance
in order to make this kind of frequency multiplication by two possible. In a small aha
moment, I realised that we do, indeed, have two signals in our data after all, namely, the
two frequency components of the real-valued analogue input signal. A quick sketch of
the frequency mapping and aliasing taking place in the digital receiver showed how the
receiver could produce the measured disturbance frequencies: the unwanted spectral
component of the analog input, which one normally assumes is �ltered out, would end-
up in producing precisely the observed numbers.

For instance, the transmission frequency F��, which shows up at 10.4 MHz in the A/D
input, has spectral components at 10.4 MHz and �10.4 MHz. In the channel board, as
I very well knew, the negative frequency component is shifted to zero frequency, and
the positive frequency component, which thereby is shifted to 20.8 MHz, is �ltered out.
But if that �ltering is less than perfect, with 15 MHz sampling, the 20.8 MHz has a live
alias at 20.8 MHz-15 MHz=5.8 MHz, and when this is then decimated to the �nal 5 MHz
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sampling frequency, the unwanted spectral component will appear in the �nal 5 MHz
baseband as a 0.8 MHz complex sinusoid�. The desired frequency component of the
analogue signal goes to zero-frequency, and when these two frequencies, DC and the
unwanted component at 0.8 MHz, interfere, a 0.8 MHz beat frequency can result.

It was immediately clear to me that the failure to suppress the unwanted frequency
component in detection must be the reason for the observed disturbance. But it still
remained to be checked whether this failure was due to some malfunction of the �lter,
or whether it simply was a consequence of how the �lter had been designed.

In Chapter � of this document, I will show that the �lter behaves correctly, that is,
as designed. The b����d� �lter has such a design that it—as an unintended but un-
avoidable consequence—does not suppress the unwanted frequency very well. I will
also demonstrate that the decimation 3 is almost the only case one needs to be worried
about; with the possible exception of the b���d� �lter used for plasma-line reception in
beta (see Fig. ��), all other �lters currently in use suppress the unwanted frequency well
enough to allow it be entirely ignored. In the next two Chapters, we build the machinery
needed to model the disturbance.

3 Operation of the EISCAT digital receiver

The Tromsø UHF radar’s receiver has two analogue receiver chains, one for the ion line
and the other for plasma line. Both analog chains start from the antenna and end in an
A/D converter which samples continuously at 15 Msamples per second. Both A/D con-
verters feed three identical digital channels each, shown schematically in Fig. �. The real-
valued A/D input signal xa(t) is band-limited by a bandpass �lter centred at 11.2 MHz
and having 3 dB width of slightly over 7 MHz.

In sampling, according to the sampling theorem, the spectrum of the stu� in the ana-
log passband becomes periodic by the primary sampling frequency fs (corresponding to
the sampling interval ⌧s ⇤ 1/ fs). In this chapter, we assume the “stu� to be deterministic
signals x(t) for which the Fourier transform exists; these are called “energy signals”. In
Chapter �, we handle noise-like, or random, signals.

The sampling theorem relates the discrete-time spectrum and the continuous-time
spectrum via

Xs( f ) ⇤
1X

m⇤�1
Xa( f � m fs) . (�)

The Xa( f ) is the spectrum (Fourier transform) of the continuous-time signal xa(t),

Xa( f ) ,
Z 1

�1
xa(t)e�i2⇡ f t dt . (�)

The Xs( f ) is the spectrum of the sampled signal, which is de�ned as the discrete time
Fourier transform of the sample sequence xs

n , xa(n⌧s),

Xs( f ) , 1
fs

1X

n⇤�1
xs

ne�i2⇡( f / fs )n . (�)

� By complex sinusoid in this article I mean the complex exponential function Aei!t , not the function sin
with a complex argument.
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The right-hand-side of Eq. (�) is called the periodic summation of the analog spectrum
Xa( f ).

Note the factor 1/ fs ⇤ ⌧s in the de�nition of the discrete spectrum, Eq. (�). Many
authors do not use it. But I want to have the discrete-time spectrum to be as similar to
the continuous-time spectrum as possible, starting from them having the same physical
unit (V/Hz). As typically in signal processing, I take the samples to have the unit of a
Volt, and will also assume unit impedance, to that the power has unit of V2.

Also note that it can occasionally be slightly confusing not to have the sampling fre-
quency explicit in the notation of the discrete spectrum, e.g. X( f 0s ; f ) or X( f / fs). But the
former notation would be too cumbersome for the simple needs of this article, and the
latter I do not like because I want to consider the discrete-time spectrum to be function
of the physical frequency f , not a dimensionless frequency. A problem that can occur
is that if two spectra refer to di�erent sampling frequencies, one can have X( f ) ⇤ Y( f )
for all f , even though the underlying sequences are di�erent.

Equation (�) is sometimes explained by stating that the sample sequence xn is ob-
tained by multiplying x(t) by the Dirac comb XT(t) (de�ned in Eq. (�), below). If one
then computes the continuous time spectrum Eq. (�) of the product x(t)XT(t), one gets
the r.h.s. of Eq. (�). (That product will show up in the proof of the sampling theorem,
below.) The problem with this argument is that the sample sequence xn clearly is not
actually obtained in that way; the samples are most naturally modelled as numbers, not
as delta-functions. Nevertheless, the argument provides an a priori reason to expect that
the properties of the discrete time spectra are to some degree similar to the properties
of the continuous time spectra.

In my view, Eq. (�) is logically strictly a de�nition, not a result. That it is a good
de�nition, can ultimately be justi�ed only a posteriori, by showing that so de�ned, the
discrete time spectrum keeps as many of the properties of the physical spectrum as one
can hope for. Most especially, one expects some ambiguity by the sampling frequency,
because two sinusoids that di�er my a multiple of the sampling frequency will produce
precisely the same set of samples. On the other hand, for a su�ciently slowly wiggling
signal, one expects that the samples should have enough information to allow recover-
ing the original spectrum. It should be possible to compute from the samples a quantity
that can give back the original spectrum, modulo the ambiguity. Then it makes sense
to de�ne that quantity as the discrete time spectrum. The sampling theorem and its
consequences show that this indeed is possible.

The inverse relation to Eq. (�) is

xs
n ⇤

Z fs

0
Xs( f )ei2⇡( f / fs )n d f . (�)

The sampling theorem can be neatly proved using properties of the Dirac combX(x)�,
which is the periodic summation of Dirac delta-functions,

X(x) ,
1X

n⇤�1
�(x � n) . (�)

This function is periodic, by unity, so it can be expanded into Fourier series

X(x) ⇤
X

n

cnei2⇡xn . (�)

� The spiky glyph is the cyrillic letter sha.
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The coe�cients cn are found as usual with the inverse transformation, and are all unity:

cn ⇤

Z 1/2

�1/2
X(x)e�i2⇡xn dx ⇤

Z 1/2

�1/2
�(x � 0)e�i2⇡xn dx ⇤ 1 . (�)

Thus, we can represent the Dirac comb also in the form

X(x) ⇤
1X

n⇤�1
ei2⇡xn . (�)

Using the delta-function property

�(ax) ⇤ 1
|a | �(x) ,

one gets from Eq. (�) another representation of the time-dimensional Dirac comb XT
with period T,

XT(t) ,
1X

n⇤�1
�( f � mT) ⇤ 1

T

1X

n⇤�1
ei2⇡tn/T . (�)

The sampling theorem follows from Eq. (�) almost immediately. Starting from the right-
hand-side of Eq. (�), and freely changing the order of integrations and summations, we
get

1X

m⇤�1
Xa( f � m fs) ⇤

1X

m⇤�1

Z 1

�1
xa(t)e�i2⇡( f�m fs )t dt

⇤
1
fs

Z
xa(t) *,

1
⌧s

X

m

ei2⇡tm/⌧s+
- e�i2⇡ f t dt

⇤
1
fs

Z
x(t)X⌧s (t)e�i2⇡ f t dt

⇤
1
fs

Z
x(t)

1X

m⇤�1
�( f � m⌧s)e�i2⇡ f t dt

⇤
1
fs

1X

m⇤�1
x(m⌧s)e�i2⇡ f ⌧s m

⇤ Xs( f ) .

In the EISCAT receiver, the location of the centre point and width of the analog pass-
band is carefully matched to the sampling frequency, as they in general must be in band-
pass sampling. The analog passband is so selected that the periodic replicas in the spec-
tral domain do not overlap (to prevent possibly distorting spectral information), but on
the other hand cover the frequency axis more or less uniformly (so that receiver noise
will look like white noise; see the discussion immediately after Eq. (��)). And in any
case, the passband must be su�ciently wide to cover the analogue frequencies of in-
terest. The top panel of Fig. � shows schematically the analog passband and how it
is periodically extended in sampling. The �� MHz intervals on the frequency axis with
endpoints 7.5+m⇥15 MHz are called the Nyquist zones of the 15 MHz sampling. In most
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cases, spectral data are presented using the Nyquist zone around the zero-frequency. In
this article, I call that zone, [�7.5, 7.5] MHz, the primary baseband.

The bottom part of Fig. � illustrates schematically how the spectrum of a narrow band
(narrow compared to the passband) real-valued analog signal typically is transformed
in a digital channel. Referring to the Figure, it can be appreciated that that there is a
need for two “basebands”. The primary A/D output samples xs

n , �owing at the rate
fs ⇤ 15 MHz, are never directly used in EISCAT. Instead, a decimating �lter is used to
reduce—decimate—the sampling rate by some integer factor M, so that the �nal sample
stream zn that is stored to the channel bu�er memory and is available for further pro-
cessing or permanent storage, represents a sampling rate f 0s ⇤ fs/M. This rate is termed
the �nal sampling rate in this article.

The operation of a factor-M decimator, such as the block marked by “M” in Fig. �, on
a sequence yn is formally de�ned via the relation

zn , yMn , (��)

which says that the decimated sequence zn is obtained by picking every M’th element
of the original sequence yn , and disregarding others.

Before proceeding to inspect the spectrum of the decimated sequence, an early warn-
ing must be given. The decimation operation, like the digital �ltering operation in
Eq. (��), is a linear operation on the sample sequence, and so can, e.g., represented by
a matrix. But there is a signi�cant qualitative di�erence between these two basic linear
signal processing operations and operators. The digital �ltering operator is “shift in-
variant”, while the decimation operator is not. In practical terms, the shift invariance
means that if we have a long input sequence to the �lter, and then we shift the sequence
in time, the output sequence is essentially the same, it is just shifted by the same amount
as the input. But if the input sequence to the decimator is shifted by anything else than
a multiple of the decimation factor, an entirely di�erent output sequence can result.

We will also see that �ltering operators are “commutative”, so that if one �rst �lters by
�lter H1, and then by H2, the same result is be achieved if the operations are done in the
opposite order. And clearly, two decimation operators are commutative. But instead, a
decimation operator and a �ltering operator do not commute with each other, as we will
see later in this article. It also follows that while two �lters can be combined to a single
�lter, a �lter and decimator cannot be combined into a �lter (see footnote � on p. ��.).

Recalling the sampling theorem, one expects that the spectrum Z( f ) of the zn se-
quence is periodic by the associated sampling frequency f 0s . By the same token, the
spectrum of the input sequence yn to the decimator in Fig. � still has the periodicity
fs . The change of periodicity is achieved by kind of “�nite periodic summation”, by
adding together M shifted copies of the spectrum Y( f ), with the shifts taken in steps of
f 0s ⇤ fs/M,

Z( f ) ⇤
M�1X

m⇤0
Y( f � m f 0s ) . (��)

We refer to Eq. (��) as the decimation theorem. We will occasionally use the notation
of a “decimation operator” M

# as a shorthand for the �nite periodic summation like in
Eq. (��), and write Eq. (��) in the form

Z( f ) ⇤ M

#.Y( f ) .
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The decimation theorem could be proved from the sampling theorem, by compar-
ing the results of two di�erent ways of producing samples with the �nal sampling rate:
either directly with the �nal rate f 0s ; or sampling initially with rate fs , followed by deci-
mation (without any �ltering involved) by M.

But I give here an independent proof that is analogous to the proof of the sampling
theorem, but instead of the Dirac delta function, involves the Kronecker delta. Starting
from the r.h.s. of Eq. (��), we get

M�1X

m⇤0
Y( f � m f 0s ) ⇤

1
fs

M�1X

m⇤0

1X

n⇤�1
yne�i2⇡[( f�m f 0s )/ fs ]n

⇤
1
fs

X

n

yn *,
M�1X

m⇤0
ei2⇡ m

M n+
- e�i2⇡( f / fs )n .

The sum of type 1+ x + · · ·+ xM�1 in parenthesis equals M when n is an integer multiple
of M, and is zero otherwise, so is equal to M

P
k �n ,kM . We have

M�1X

m⇤0
Y( f � m f 0s ) ⇤

M
fs

X

k

ykMe�i2⇡( f / fs )kM

⇤
1
f 0s

X

k

zke�i2⇡( f / f 0s )k

⇤ Z( f ) ,

which completes the proof.
The e�ect of decimation is sketched in Fig. � as the step from Y( f ) to Z( f ). I call the

frequency interval [� f 0s/2, f 0s/2] the �nal baseband in this article.
Referring to Fig. � and Fig. �, the �rst step of processing after sampling is a frequency

shift towards the right, to move a negative frequency component of the spectrum Xs( f )
to, or near to, the zero frequency. This step is called quadrature detection. In hard-
ware, the frequency shift is achieved by multiplying the still real-valued samples xs

n by
a complex exponential sequence in the NCOM module, to produce the complex-valued
sequence xn

xn ⇤ ei2⇡⌫ncon xs
n . (��)

The dimensionless NCO frequency parameter ⌫nco is

⌫nco ⇤ fnco/ fs . (��)

That multiplication by a complex sinusoid in the time domain corresponds to a fre-
quency shift in the frequency domain, follows directly from the de�nition of the spec-
trum,

X( f ) ⇤
1
fs

X

n

xne�i2⇡( f / fs )n

⇤
1
fs

X

n

�
xs

nei2⇡⌫ncon� e�i2⇡( f / fs )n

⇤
1
fs

X

n

xs
ne�i2⇡[( f� fnco)/ fs ]n

⇤ Xs( f � fnco) .
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The frequency fnco is a user-con�gurable channel-speci�c tuning value, just called
the NCO value of the channel in EISCAT. In Fig. �, fnco is equal to f a

2 , the location of
the positive frequency component of the analogue spectrum. Thus it is the negative
frequency component at f a

1 ⇤ � f a
2 that moves to zero frequency in the detection.

The general strategy is to ensure that the transmission frequency ftx, somewhere
around �� MHz as it appears at the A/D input, is shifted to zero frequency, so one
normally takes fnco ⇤ ftx. After the primary sampling and the detection, the negative
frequency component f a

1 of the analogue signal will appear at position f1 near zero in
the primary baseband. An alias of the positive frequency component of the signal at f a

2
will show up in the primary baseband at position f2. The frequencies f1 and f2 are com-
puted by �rst translating f a

1 and f 2
2 to the interval [0 , fs] using the modulus operator,

and then, if the result is larger than fs/2, subtracting fs , as in Algorithm �.

for k=�,� do

fk = mod ( f a
k + fnco , fs)

if fk > fs/2 then

fk ⇤ fk � fs
end

end

Algorithm �: Pseudocode for mapping the analogue spectrum with delta-peaks
at f a

1 and f a
2 to the primary baseband, f a

k ! fk . To map directly to the �nal
baseband, f a

k ! f 0k , replace fk by f 0k and fs by f 0s .

Because the decimation is by an integer factor, the recipe of Algorithm � can be used
to compute also the positions f 01 and f 02 of the frequencies in the �nal baseband, just by
replacing fs by f 0s . Nevertheless, even if the frequencies f 01 and f 02 in the �nal baseband
were indeed computed directly by the above recipe, one still needs to compute also the
intermediate frequencies f1 and f2 on the primary baseband, for it is these frequencies
that are relevant in determining the attenuation of the signal in the �ltering.

Filtering of the sequence xn by a by a �lter with impulse response sequence hk (the
elements hk are called the �lter taps) is by de�nition via the convolution sum �,

yn ,
1X

k⇤�1
hk xn�k ⇤

1X

k⇤�1
hn�k xk . (��)

The EISCAT channel �lters are of the FIR (�nite impulse response) type, which have
only a �nite number of non-zero �lter taps hk . Moreover, they are real-valued, meaning
that the taps hk are all real-valued, even though the sequences xn and yn are complex-
valued.

In the frequency domain, the �ltering transforms the spectrum X( f ) to Y( f ) by simple
multiplication,

Y( f ) ⇤ H( f )X( f ) , (��)

where the transfer function H( f ) of a digital �lter is de�ned as the Fourier transform of
� To be consistent with my quest of making the digital quantities to correspond as closely as possible with

the analogue quantities, one should replace the dimensionless taps hk with hk⌧s on the right-hand-side
of both Eq. (��) and Eq. (��), so as to force hk to have dimension �/s. But we do not compare digital and
analog impulse responses in this article, so including the ⌧s seems excessively pedantic.
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the �lter’s inpulse response sequence hn ,

H( f ) ,
X

k

hke�i2⇡( f / fs )k . (��)

To prove Eq. (��) from Eq. (��), we use the de�nitions of spectrum and transfer func-
tion, and make a change of summation index (n ! m + k) in a suitable place. Thus,

Y( f ) ⇤
1
fs

X

n

yne�i2⇡( f / fs )n

⇤
1
fs

X

n

*
,
X

k

hk xn�k+- e�i2⇡( f / fs )n

⇤

X

k

hk *,
1
fs

X

n

xn�ke�i2⇡( f / fs )n+
-

⇤

X

k

hk *,
1
fs

X

m

xme�i2⇡( f / fs )(k+m)+
-

⇤

X

k

hk *,
1
fs

X

m

xme�i2⇡( f / fs )m+
- e�i2⇡( f / fs )k

⇤ H( f )X( f ) .

In this article, as with the spectra, we consider also the transfer function to be a func-
tion of the physical frequency f rather than the dimensionless normalised frequency
f / fs . The transfer function is a dimensionless quantity, both in the digital and in the
analog domain. In the digital domain, also the impulse response is a dimensionless
quantity. In continuous-time domain, the impulse response h(t) de�nes �ltering via the
convolution integral

y(t) ⇤
Z 1

�1
h(t0)x(t � t0)dt0 ,

which implies for h(t) the unit �/s. But because the continuous-time transfer function
is de�ned via the normal Fourier integral,

H( f ) ,
Z 1

�1
h(t)e�i2⇡ f t dt ,

the transfer function stays dimensionless, and Eq. (��) holds in continuous-time also.
In both digital and analog domain, the squared magnitude of the transfer function,

|H( f )|2, can be viewed as kind of “relative gain” of the �lter, which describes how much
attenuation or ampli�cation takes place at a given frequency. Typically, for theoretical
considerations, one normalises the transfer function so that H(0) ⇤ 1, but we do not
require this here.

The transfer function is periodic by the sampling frequency fs . The squared magni-
tude of the transfer function is also called the power (-domain) response of the �lter. In
discrete-time, it has the property

Z fs

0
|H( f )|2d f ⇤ fs

X

n

|hn |2. (��)
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The “reference frequency” fs in Eq. (��) is the sampling frequency of the samples
coming into the �lter, the primary 15 MHz sampling frequency fs in our case. Thus, the
�lter H( f ) lives naturally in the primary �� MHz wide baseband. On the other hand, the
spectrum Z( f ) of the �nal decimated data zn that are visible to user has period equal
to the the �nal sampling frequency f 0s . So one needs to address the question about how
H( f ) relates to the relevant things, spectra especially, in the �nal baseband.

It would be nice to have the channel’s band-shaping �lter also being periodic by f 0s ,
so that it could be fully speci�ed by showing it on the �nal baseband only. Motivated by
the decimation theorem of signal spectra, Eq. (��), one can form a quantity, call it H0( f ),
by

H0( f ) , M

#.H( f ) ⇤
M�1X

m⇤0
H( f � m f 0s ) , (��)

which has the required periodicity. Could the squared magnitude of H0( f ) perhaps be
the desired band-shaping function? As far as I can recall, this was vaguely the concept
I had in mind when I made a drawing of EISCAT Svalbard radar digital receiver for a
paper by Wannberg et al. that was published in ���� in Radio Science.

So it is lamentable that the above strategy cannot be made to work. One cannot form
a proper �lter whose transfer function would have the period of the �nal sampling fre-
quency and which would map the input spectrum X( f ) to the �nal spectrum Z( f ) by a
simple multiplication. A proper �lter, one respecting the de�ning equation Eq. (��), will
not change the sampling frequency.� A decimator is needed somewhere between the
input and the output, and the non-shift-invariant linear operation of �ltering together
with decimation cannot, in general, be replaced by the shift-invariant linear operation
of �ltering alone.

4 Revisiting a 1997 paper on the EISCAT Svalbard Radar

As far as I know, the only peer-reviewed account that covers the modern-day EISCAT
digital receiver is a ���� paper by Wannberg et al. in Radio Science, which I will here
refer to as [W��]��. The digital receiver is explained extremely brie�y in the paper, and
for that reason alone, expanding on the paper a little might be in order. But it now seems
to me that Figure � of the paper, depicting the ESR receiver, is not quite correct. For con-
venience, I have reproduced the relevant part of that �gure as Fig. � of this article. The
right-hand-side column shows the frequency mapping of the EISCAT Svalbard radar
receiver, somewhat analogously to Fig. � of this article. Both columns have something
that could usefully be changed. I handle the functional block diagram �rst.

� It is bad that the expression “decimating �lter” is in common use in the signal processing literature; I
consider it basically to be an oxymoron. In the DSP context, I would prefer the word “�lter” to mean
solely something that respects the convolution Eq. (��), and therefore does not change the sampling
rate. In this narrow view, a decimating �lter is not a �lter; not a good way to use the language. But of
course, the game in this respect was lost long time ago, and a “�lter” can be just about any processing
unit that somehow strips something from its input.

�� Radio.Sci., ��, ����–����, ����, The EISCAT Svalbard radar, A case study of modern incoherent scatter radar
system design by Wannberg, Wolf, Vanhainen, Röttger, Postila, Markkanen, Jacobsen, Stenberg, Larsen,
Eliassen, Heck and Huuskonen.
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Functional block representation of the HSP43220 decimating filter

The part of the [W��] drawing that represents the digital receiver, the left-hand-side col-
umn of the diagram of Fig. �, shows two low-pass �lters and a single decimator located
between them. By the look of it, the drawing compares badly both with the Fig. �,which
has one �lter and one decimator, and the more detailed Fig. �, which has two �lters and
two decimators. All these three drawings purport to represent precisely the same chan-
nel hardware, implemented via the EISCAT channel board. One should not become
confused with the particular values of the frequencies in the ESR diagram; both the pri-
mary sampling frequency and the location and size of analog passband were di�erent
in the early ESR receiver compared to the present EISCAT receivers.

I think the way the digital receiver is drawn in [W��] is wrong. How we arrived at the
drawing I cannot recall. It is not impossible that we simply interpreted the decimating
�lter’s data sheet slightly wrongly. In the HSP����� data sheet, the top level functional
diagram of the decimating digital �lter (DDF) is drawn as two cascaded blocks, labeled
“high order decimation �lter” (HDF) and “�r decimation �lter” (FDF)��. This is clear
enough, but trouble begins when one tries to �nd out, using the more detailed diagrams,
where the �lter(s) and decimator(s) are within these two main blocks.

It is especially di�cult to �nd decimator blocks—they simply are not all there. There
is one, but only one, block that has a promising name: a “decimation register”. That
block is embedded in the middle of the HDF, between two blocks called the integrator
(HI) and the comb (HC). But there is no decimator block marked for the FDF anywhere
in the data sheet. On the other hand, the name “�r decimation �lter” suggests that the
FDF would be doing decimation also, in addition of �ltering. In the [W��] drawing, we
show only one decimator, so presumably we thought that the FDF would only be doing
�ltering. (Why would we have shown a decimator for the HDF, but not for the FDF, if
we had thought that both of them actually do decimation?) I will denote by HFDF the
functional block that does the actual �ltering in the FDF.

For the [W��] paper, so it seems, we had concluded that the hardware con�guration
really is

DDF ⇤ hHI ! M1 ! HC HFDFi ?! ,
where I have denoted the decimator inside the HDF by M1. This can be shortened by
noting that the last two �lters can be combined to a single �lter H0 ⇤ HC HFDF, whose
transfer function is the product of the transfer functions of the two �lters, as follows
from Eq. (��). Then the con�guration would become

DDF ,! hHI ! M1 ! H0i ?! ,

which could be what our drawing in [W��] shows. In this shorthand diagrammatic
notation, I use the sign “!” as an abbreviation for “followed by”, and the sign “,!” for
“can be replaced by”, or “is equivalent to”. I do not draw an arrow between two �lters,
because the actual order does not matter there.

But then we should have been left wondering, in addition of the attribute “decimat-
ing” in the name FDF, also why the programming instructions in the data sheet refer to
two decimation parameters, one for the HDF, one for the FDF. I will show later in this
section that the FDF’s decimation functionality cannot simply be absorbed into the HDF
decimator. So why is there not any FDF decimator block shown in the data sheet?
�� The actual label used in the data sheet for the �r decimation �lter is just “FIR”. That obviously is a

completely unusable name for our purposes here.
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A moment’s thought suggest that decimation in the FDF block is such a trivial oper-
ation that it does not, per se, merit its own block in the hardware. Decimation can be
done by not computing at all, to at least not sending forward, those samples that are not
actually needed. So from the hardware point of view, the decimation in the FDF is more
of a control operation, rather than an actual computation.

But that does not make it any less real. For a functional model of the system, we
need a block diagram where we can clearly point out where the �ltering is done, and
where the decimation. I will show below that the actual hardware is equivalent both
to my detailed block diagram, Fig. �, and the simpli�ed diagram of Fig. �. I will also
show that the drawing in [W��] is not equivalent with either of these and is, therefore,
basically wrong.

If I were to draw the receiver diagram of Fig. � now, I would use Fig. �. It di�ers
from [W��] in that the �nal decimator M2 is missing from [W��]. Even if dropping out
samples after the �nal �lter is trivial from the hardware point of view, the e�ect to the
�nal spectra can be entirely non-trivial, as will be discussed in the next section. The �nal
decimator is an essential feature of the system, and must not be left out of the functional
block diagram.

To analyse the �lter’s data sheet in order to verify the actual �lter structure, we need
the result that in a certain case, it is possible to change the order of a decimator and �lter
in a functional block diagram. In the same exhausted late-night spirit that prompted
Intersil (then Harris Semiconductors) engineers to choose the name “FIR” as the proper
name for one of their FIR �lters, I will call the result the order-change rule, and write it
down diagrammatically as

hM ! Hi ,! hH(M) ! Mi . (��)

The order change rule (��) says that

• In any system of cascaded digital �lters and decimators, it is permissible to change
the con�guration “decimator followed by �lter”,

hM ! Hi ,

to the con�guration “a �lter followed by the same decimator”,

hH(M) ! Mi ,

where the new �lter H(M) is formed from the original �lter H by inserting M � 1
zeros between each pair of consecutive �lter taps, as in Eq. (��).

We call those two decimating �lter con�gurations functionally equivalent, to mean that
for any input, both systems will produce the same output.

In the end of the section, I will show that the other direction of the order change is not
in general possible: a given con�guration [H ! M] cannot in general be replaced by an
[M ! H0], no matter what H0.

The impulse responses h(M)
n and hn of the two �lters in Eq. (��) are related by

h(M)
n ⇤

(
hk when n ⇤ Mk for some k
0 otherwise . (��)

Eq. (��) implies that
hk ⇤ h(M)

Mk for any k . (��)
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The order-change rule is most directly proven in the time domain. We denote the
transforming signal in the processing chain [M ! H] by xn , yn and zn ,

xn { M{ yn { H{ zn

and the signal in the processing chain [H(M) ! M] by xn , y0n and z0n ,

xn { H(M) { y0n { M{ z0n ,

and verify that for any input xn , the outputs zn and z0n are the same:

zn ⇤

X

k

hk yn�k ( de�nition of �lter, Eq. (��)

⇤

X

k

hk xM(n�k) ( de�nition of decimator, Eq. (��)

⇤

X

k

h(M)
Mk xMn�Mk ( Eq. (��)

⇤

X

k

h(M)
k xMn�k ( Eq. (��)

⇤ y0Mn

⇤ z0n .

We will prove the order-change rule also in the frequency domain, using the decima-
tion theorem. We will �rst show that it follows from the de�nition Eq. (��) of the �lter
H(M), that as function of the physical frequency f , the transfer functions H(M) and H are
equal,

H(M)( f ) ⇤ H( f ) for all f . (��)
The transfer functions can be the same, even though the impulse responses are di�erent,
because the two �lters refer to two di�erent sampling frequencies; as a function of phys-
ical time, they would cover the same time interval��. Formally, keeping careful track of
the relevant sampling frequency in the de�nition Eq. (��) of the transfer function, and
making use of Eq. (��) and Eq. (��), we have

H( f ) ⇤

X

k

hke�i2⇡( f / f 0s )k ( H refers to f 0s

⇤

X

k

hke�i2⇡( f / fs )Mk

⇤

X

k

h(M)
Mk e�i2⇡( f / fs )Mk

⇤

X

k

h(M)
k e�i2⇡( f / fs )k

⇤ H(M)( f ) .
�� This is one of the cases where it would be good to the have the relevant sampling frequency explicit

in the notation of the transfer function. As functions of two variables, fs and f , the transfer functions
H(M) and H are, of course, di�erent. The notational problem is avoided in the “standard” DSP notation
which uses the normalised frequency as the principal frequency variable. But the argument does not
become less confusing by that. Instead, you will �nd those authors, too, constantly reminding you that
their formulas refer now to the higher sampling frequency, now to the lower.
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I mention in the passing that the operation of inserting M�1 zeros after each element
of the sequence xn so that the new sequence represents M times faster sampling rate,
is called “interpolation”, and is kind of inverse operation to the decimation, so that we
could denote it by M

". Under this operation, the spectrum of the sequence, as function
of the physical parameter f , does not change, but only scales by 1/M,

M

".X( f ) ⇤ 1
M

X( f ) .

The scaling becomes from our normalisation factor 1/ fs in the de�nition Eq. (�) of the
spectrum. We do not have such normalisation in the de�nition of the transfer function,
and so the �/M is missing in Eq. (��). Nevertheless, we will call the �lter H(M) the
“interpolated form” of the �lter H, and may use the alternative notation M

".H for it.
We now use the basic property Eq. (��) of the transfer function, and the decimation

theorem Eq. (��), to show that for any input spectrum X( f ) to the two systems in Eq. (��),
the output spectra will be the same. We denote the spectra of signals xn ,yn , zn , y0n and
z0n by the corresponding capital letters, and verify that for any given input X, the output
spectra Z and Z0 are equal:

Z( f ) ⇤ H( f )Y( f ) ( Eq. (��)

⇤ H( f )
M�1X

m⇤0
X( f � m f 0s ) ( Eq. (��)

⇤

X

m

H( f )X( f � m f 0s )

⇤

X

m

H( f � m f 0s )X( f � m f 0s ) ( H is periodic by f 0s

⇤

X

m

H(M)( f � m f 0s )X( f � m f 0s ) ( Eq. (��)

⇤

X

m

Y0( f � m f 0s ) ( Eq. (��)

⇤ Z0( f ) .

This proof of the the order change rule in the spectral domain is illustrated by the draw-
ings in Fig. ��.

With the order-change rule, we conclude from the data sheet that the actual hardware
structure of the HDF as “integrator-decimator-comb”, or

HDF ⇤ hHI ! M1 ! HCi , (��)

can be replaced by the equivalent system

HDF ,! hHI H(M1)
C ! M1i . (��)

It follows from the basic property of the transfer functions that the two cascaded �lters
in the chain (��) can be combined into a single �lter with transfer function

H(M1)
CIC ( f ) ⇤ HI( f )H(M1)

C ( f ) . (��)
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The abbreviation “CIC” stands for “cascaded integrator-comb”��. Thanks to Eq. (��), the
superscripts M1 are not needed in the transfer functions, so we conclude that the high-
order decimating �lter HDF is functionally equivalent to a single �lter with transfer
function

HCIC( f ) ⇤ HI( f )HC( f ) , (��)

followed by the decimator M�. We note down this result diagrammatically as

HDF ,! hHCIC ! M1i . (��)

The HSP�����’s other main block, the �r decimating �lter FDF, essentially computes the
convolution sum of an N/2 taps, even or odd symmetric, �nite impulse response �lter,
with freely settable tabs, in a straightforward way, using a single multiplier-accumulator.
The input data are the �lter coe�cients and the latest N samples from the HDF, which
are available in a RAM bu�er. Only those output samples are computed that are actually
needed according to the FDF’s decimation parameter M2. The FDF generates a signal
to tell external hardware when a new sample is ready to be read from the FDF’s output
register. This functionality clearly can, and should, be represented as a �lter followed
by a decimator,

FDF ,! hHFDF ! M2i . (��)

To my mind, the most natural functional block diagram for the whole HSP������ dec-
imating digital �lter therefore is the equivalent representation

DDF ,! hHCIC ! M1 ! HFDF ! M2i , (��)

which corresponds to the one in Fig. �. Using the order-change rule to move the HDF
decimator M1 to be after the FDF, one gets the representation of Fig. �

DDF ,! hHCIC H(M1)
FDF ! M1 M2i (��)

⇤ hHDDF ! MDDFi . (��)

The total transfer function of the �lter part HDDF of the HSP����� is

HDDF( f ) ⇤ HCIC( f )HFDF( f ) . (��)

The total decimation of the HSP����� is the product of the decimation M1 of the HDF
and M2 of the FDF,

MDDF ⇤ M1M2 . (��)

Corresponding to Eq. (��), the total equivalent impulse response hDDF of the system
in the one-�lter one-decimator equivalent form of Eq. (��), is the convolution of the
impulse responses of the CIC and the zero-stu�ed FDF,

hDDF ⇤ hCIC ⇤ h(M1)
FDF . (��)

This �lter operates on samples �owing with the primary sampling rate fs . In the con-
text of the EISCAT receiver, we may call the �lter part of, HDDF, the DDF the channel’s
postdetection �lter, PDF.
��E.B. Hogenauer, An Economic Class of Digital Filters for Decimation and Interpolation, IEEE Trans. on

Acoust., Speed, Signal Processing, vol ASSP-��, pp. ���-���, Apr. ����.
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Nothing much needs to be said about the FDF; the ddfplan.m program provides a way
for the �lter designer to assign the �lter taps, by imagining that the FDF is a cascade of
N boxcar-in-time �lters, each of length L. For the FDF, the decimation, M2, can be set
independently of the �lter taps (within �lter speed specs). The caption of Fig. � gives
some of the details. The created FDF is a linear phase �lter.

For the HDF, we still need dig one level deeper into the HSP����� data sheet, to �nd
out what more speci�cally goes into the integrator HI and the comb HC. These consist
of �ve identical basic integrators and combs, respectively, which we denote by Hi and
Hc, so that the actual hardware can be diagrammed as

HDF ⇤ hHI ! M1 ! HCi ⇤ hHiHiHiHiHi ! M1 ! HcHcHcHcHci . (��)

Using the order-change rule �ve times to move M1 to the end and then rearranging the
order of the cascaded basic integrators and the zero-stu�ed equivalent basic combs, we
get an equivalent representation

HDF ,! hhHi H(M1)
c iK ! M1i , (��)

where we have marked the number of sections actually used to by K, which can be from
� to �. The number of sections is programmable con�guration parameter, and is set in
the ddfplan.m script. By comparing Eq. (��) to Eq. (��), we identify the �lter part, the
CIC, of the HDF, as the equivalent �lter

CIC ,! hHi H(M1)
c iK ⇤ Hcic

K , (��)

where we de�ned the basic cascaded integrator-comb, Hcic, as the �lter consisting of the
basic integrator Hi followed by the zero-stu�ed equivalent basic comb HM1

c ,

Hcic , hHi H(M1)
c i ,! hHi M1 Hci . (��)

The transfer function Hcic of the basic CIC is (no substribt M1 needed)

Hcic( f ) ⇤ Hi( f )Hc( f ) , (��)

and the transfer function of the whole CIC is

HCIC( f ) ⇤ [Hi( f )Hc( f )]K
⇤ [Hcic( f )]K . (��)

We now need to �nd out the transfer functions of the basic integrator Hi and the basic
comb Hc, or directly the transfer function Hcic( f ) of the basic CIC. We will compute
Hi( f ) and Hc( f ) separately below using Fourier-technics, but for better insight into the
basic CIC’s operation, it is better to compute Hcic( f ) directly in the time domain. We
could use either of the two equivalent representations of the basic CIC in Eq. (��), but it
is easier to work with the con�guration which incorporates the zero-stu�ed comb H(M1)

i .
We will get directly the sought-for transfer function of the equivalent �lter, instead of
needing to extract it from the input–output relation of a system having a decimator in
the middle.

We inspect the data sheet to see what precisely the basic integrator and the basic comb
do. First the integrator. From the data sheet one �nds, curiously, that the integrator Hi
actually is not a �nite impulse response �lter at all, but an in�nite impulse response �lter,
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namely, a simple accumulator. Such a device corresponds to a recursive �lter which has
an input (xn)-output (yn) relation

yn ⇤ yn�1 + xn . (��)

This means that the integrator just keeps endlessly accumulating the sum of all the sam-
ples it has received, and so can write the solution to Eq. (��) in the form

yn ⇤

nX

k

xk , (��)

where we do not really care what the precise start index in the summation is (it might
be a large negative number in this notation if the accumulator has been accumulating
for a long time).

Then the basic comb. In the original, hardware, con�guration, the comb just computes
the di�erence between current and the last-but-one sample of its input stream, that is,
its input output relation is

y0n ⇤ x0n � x0n�1 . (��)

Thus, the basic comb is a two-tap FIR �lter, with impulse response

hc ⇤ (1,�1) . (��)

The impulse response H(M)
c of the equivalent �lter therefore is

h(M)
c ⇤ (1, 0, . . . , 0,�1) (M1 � 1 zeros between the 1 and �1) . (��)

The input-output, yn ! zn , relation of the zero-stu�ed basic comb is

zn ⇤

X

k

h(M)
c ,k yn�k ⇤

X

k

hc ,k yn�M1k ⇤ yn � yn�M1 . (��)

That is, the zero-stu�ed comb computes the di�erence between its current input sample
and the by-M1 earlier input sample. The comb input samples yn are coming from the
basic integrator. We can now state the input-output relation of the basic CIC. In terms
of its input samples xn , the output samples zn of the basic CIC are

zn ⇤

nX

k

xk �
n�M1X

k

xk ⇤ xn + xn�1 · · · + xn�M1+1 . (��)

That is, the basic CIC computes the sum of the latest M1 samples coming to it. So the
basic CIC is a �nite impulse response boxcar �lter, with M1 taps, all equal to unity,

hcic ⇤ (1, . . . , 1) M1 times “1” . (��)

We have found the precise impulse response of the basic CIC, so have basically solved
the operation of the HDF. But there is still one item that needs to be addressed before we
can claim that we understand how the HDF works. This relates to the basic integrator,
Eq. (��). Don’t we have the danger of an over�ow in the ever-accumulating sum yn at
some point? The interesting answer is that yes, we for sure are going to have over�ows,
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but that does not matter. This is due to the wrapping-around property of the two’s
complement arithmetic that both the integrator and the comb use.

The result is that even though the ever-integrating sum can, and will, over�ow, the
basic CIC’s output, the di�erence of two such sums in Eq. (��), which we actually use,
will still be correct, provided that a certain condition holds. The condition is that that
correct answer, the sum of the M1 latest xn , itself must not over�ow.

I do not know of any simple proof for this property of �’s complement arithmetic, but
consider the following example. Assume word length of � bits, so the legal numbers
are �4,�3, · · · + 3. Denote the two’s complement addition by �, so that, for example,
2 � 3 ⇤ �3 (⇤ 5� 8). Then assume that yn1 ⇤ 3, and assume that �rst a 2, and then a 1, is
added to it, to give

yn2 ⇤ (3 � 2) � 1 ⇤ �3 � 1 ⇤ �2,

so that the di�erence, when also computed in the two’s complement scheme, is

yn2  yn1 ⇤ �2  3 ⇤ 3 ,

which is the correct di�erence between � and �+�+�. As about the “certain condition”,
consider the following. Take yn1 ⇤ 1, and add �rst 2 and then 3 to it to get yn2 . This time,
the di�erence is

yn2  yn1 ⇤ [(1 � 2) � 3]  1 ⇤ �2  1 ⇤ �3 ,

which is not the actual di�erence between 1 + 2 + 3 and 1, but rather, its complement.
The di�erence between the two cases is that in the correctly working one, the correct
di�erence 3 is a legal number in the �-bit system, while in the problem case, the actual
di�erence 5 no more is a legal �-bit two’s complement number. Both of these cases �t
into the general rule,

a � b � c  a ⇤ b � c ,

which shows that we will get trouble when the correct di�erence over�ows so that b�c ,
b + c.

From the impulse response Eq. (��) of the basic CIC, we get the transfer function of
the basic CIC as

Hcic( f ) ⇤

M1�1X

n⇤0
e�i2⇡( f / fs )n

⇤
1 � e�i2⇡( f / fs )M1

1 � e�i2⇡( f / fs )
(��)

⇤ M1 ⇥ e�i⇡(M1�1)( f / fs ) ⇥ DM1(⇡
f
fs
) , (��)

where the Dirichlet kernel DM1(.) is de�ned by

DM(x) , sin(xM)
M sin(x) . (��)

The complete, to unity normalized transfer function of the HDF’s �lter, with K sections
in use, therefore is

HCIC( f ) ⇤ e�i⇡K(M1�1)( f / fs ) ⇥
"
DM1(⇡

f
fs
)
#K

. (��)
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The CIC is a linear phase �lter, and because the FDF also is, the whole DDF is a linear
phase �lter. The CIC has zeros at frequencies that are multiples of the HDF output rate
fs/M1. Its impulse response, the hCIC in Eq. (��), is cascade of K boxcar �lters, each
having M1 taps,

hCIC ⇤ boxM1 ⇤ · · · ⇤ boxM1 (K times) . (��)

In Eq. (��), we found the transfer function of the basic CIC element by �rst �nding
its impulse response, using time-domain arguments. We never computed the Hi and
Hc of Eq. (��) separately. A more standard way is to compute the CIC transfer function
by computing separately the Hi( f ) and Hc( f ), and then multiplying them. The transfer
function of the comb Hc one can easily get from its impulse response (1,�1), but to
compute the transfer function of the in�nite impulse response �lter Hi, requires more
powerful tools.

The standard way in literature to compute the transfer functions Hi( f ) is by solving
the recursive equation Eq. (��) with z-transforms. I promised in the Introduction to do
without z-transforms��, so we will solve the equation using Fourier transforms instead.

To �nd the transfer function Hi( f ), we write the three sequencies, yn , yn�1 and xn in
Eq. (��) in terms of their spectra, using the relation Eq. (�). This gives for X( f ) and Y( f )
the relation

Z fs

0
Y( f )ei2⇡( f / fs )n d f ⇤

Z fs

0
Y( f )ei2⇡( f / fs )(n�1)d f �

Z fs

0
X( f )ei2⇡( f / fs )n d f

or Z fs

0

f
Y( f ) � Y( f )e�i2⇡( f / fs ) + X( f )

g
ei2⇡( f / fs )n d f ⇤ 0 .

For this to be true for all n requires

Y( f ) ⇤ 1
1 � e�i2⇡( f / fs )

X( f ) .

This implies that the transfer function of the basic integrator is

Hi( f ) ⇤ 1
1 � e�i2⇡( f / fs )

. (��)

The transfer function Hc( f ) of the basic comb we get directly from its impulse re-
sponse h0 ⇤ 1, h1 ⇤ �1. With this basic impulse response (not the zero-�lled one), the
�lter is to be considered to sit in its original place, after the decimator. Thus the transfer
function Hc( f ) refers to the reduced sampling rate fs/M1. We �nd

Hc( f ) ⇤ 1 � e�i2⇡( f / fs )M1 . (��)

Combining Eq. (��) and Eq. (��) gives Eq. (��), as before.
I have now shown how the HSP����� decimating digital �lter, according to its data

sheet, works, and have shown that both Fig. � and Fig. � are correct representations of
its operation. For the sake of the argument, would it be possible that also our drawing
�� Which is probably as good as anything. When preparing this article, I realised an error in the ddfplan.m

script, related to the z-transforms. I had confused the basic z-transform concepts of a root and a zero.
All the several tens of EISCAT �lter �les therefore contain comments where I list the locations of �lter
“poles”. In reality, a FIR �lter never has any poles. Strangely, no one has ever complained.
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in [W��], Fig. �, were a correct equivalent representation, with some clever de�nition of
the two �lters and the one decimator in between them?

The answer is no. We have seen that the actual hardware is something that terminates
with a proper �lter followed by a decimator,

! hHFDF ! M2i .

For the drawing in [W��] to be equivalent to this, it must be possible to transform this
actual hardware con�guration to the [W��] form. In the very least, it must be possible
to move the decimator M2 from the end of the processing chain to somewhere earlier.
But that is not possible. I will show below that the canonical decimating �lter

hH ! Mi

cannot in general be equivalently, that is, so that it is valid with any input, be replaced
by the system

hM ! H0i ,

no matter what �lter the H’ would be. (It is clear that the decimator M must be the same
in both cases, for a proper �lter does not change the sampling rate.)

The problem is that although the order-change rule, Eq. (��), says that a decimator in
front of any �lter can be moved after the �lter, by modifying the �lter in a suitable way,
the opposite is not true. Rather, the following holds.

• One cannot, in general, move a decimator M situated after a �lter H, to the front
of that �lter, so that—with possibly some changes in the �lter—one could get an
equivalent system.

To show this, consider the counterexample in Fig. ��, presented in the frequency do-
main. The input consist of two di�erently shaped, nearby spectral bumps (red and blue
in the �gure). The �lter H is such that it will kill one of the bumps (blue) but leave the
other intact. The decimator M is such that if the two bumps are driven though it, by
the periodic replication of Eq. (��), the bumps will overlap, distorting the shape of both,
now, actually, make the output constant. Then, in the case [H ! M], the output is series
of replicates of the bump (red) that is in the �lter’s passband. But in the [M ! H0] case,
the output is series of distorted bumps (�at line in the �gure). To remove the distortion,
we would need a new H’ for each input, but that is not allowed here. A counterexample
in the time domain is presented in Fig. ��. There, when decimation is done �rst, the
operation removes odd-numbered samples, so that the output can not depend on them,
no matter how the �ltering is done. Instead, when the �ltering is done �rst, the output
is arranged to depend on both even-numbered and odd-numbered samples. Therefore,
the two �lters cannot be made equal.

The asymmetry with regards of the decimator plus �lter order change stems from the
fact that the purpose of the �lter is, often, to reduce the “information bandwidth” of
the incoming stream so that the decimator can handle it; that is, that the smaller sam-
pling rate after decimator is still a correct one. If that protection is removed, by moving
the decimator into the front of the �lter, disaster looms. That is why with decimating
digital �lters, the �lter always is �rst and the decimator is after it. This arrangement is
analogous to having an anti-aliasing �lter in front of the A/D, which in the information
bandwidth context can be viewed as kind of decimator, too.
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About the band shape of a multirate digital receiver channel

There is no uncertainty about what one should mean by the band shape of an analog
receiver channel. The input-output relation of such a channel is similar to Eq. (��),

|Y( f )|2 ⇤ |H( f )|2 |X( f )|2 for all f , (��)

and the band shape means the squared modulus |H( f )|2 of the channels’s transfer func-
tion. Nor would there be any ambiguity in that respect in a purely digital channel if
there would be no sampling rate changes between input and output, for then Eq. (��)
is in force. But as soon as there is any sampling rate conversions, aliasing can occur,
and one needs to be more careful about what one means by band shape, and how one
displays it.

In the [W��] drawing about the ESR receiver, our Fig. �, in the bottom-right panel a
dashed line is shown, with the label “post-detection �ltering matched to �nal sampling
rate”. That line is drawn with the same periodicity as the signal spectrum (�� KHz in
the �gure). The idea presumably was to show that this is the relevant band shape of the
receiver, periodically extended due to the sampling. This idea does not work.

The basic problem is that as soon as there is sampling rate changes between input and
output, the relation Eq. (��) no more holds as a general rule. Here already the primary
sampling, by the A/D, counts as kind of sampling rate conversion. With the notations
of Fig. �, the analog input spectrum to the A/D is of the form

Xa( f ) ⇤ HA( f )XA( f ) ,

where HA( f ) is the transfer function of the analog �lter in front of the A/D, and XA is
the input signal spectrum to that �lter. Then according to the sampling theorem, the
spectrum of the sampled signal xs

n is

Xs( f ) ⇤
1X

m⇤�1
HA( f � m fs)XA( f � m fs) . (��)

For the multirate system consisting of the analog receiver and the A/D, no simple mul-
tiplicative �lter-like relation, like Eq. (��), between the input spectrum |XA( f )|2 and the
output spectrum |Xs( f )|2 no more exists. This violates the central idea of the concept of
a “band shape”, which is that the input spectrum can be simply multiplied by the band
shape to get the output spectrum.

There is a special case when one actually can salvage a �lter-like relation even for a
multirate system. This is the case of a strongly band limited system. By that I mean
a system where the input signal and the �lter both are so narrow (and, in case of real
band-pass signals, suitably placed) that there is practically no spectral overlap between
any two Nyquist components for di�erent zone index m. In particular, we then have

HA( f � m1 fs)XA( f � m2 fs) ⇤ 0 for all f if m1 , m2 . (��)

In that case, the r.h.s. of Eq. (��) factorises to the form

Xs( f ) ⇤
266664
X

m

HA( f � m fs)
377775 ·

266664
X

m

XA( f � m fs)
377775 , (��)
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where the �rst term in the r.h.s. is the periodic extension of the analog �lter and the
second term is the periodic extension of the analog signal. In addition, because also the
shifted replicas HA( f � m fs) for di�erent m and the replicas XA( f � m fs) for di�erent
m do not overlap either, in each Nyquist zone only a single term in both square brackets
in Eq. (��) contributes.

That was approximately the situation one had with the original EISCAT receiver of
the ����s, where downconversion, detection and post detection �ltering were done in
analog domain, and the sampling, directly on the baseband, was the last step in the
processing. In that old system, under the assumption of strong bandlimitness, it would
make good sense to draw a receiver diagram like in Fig. �. The dashed line there would
simply be the squared magnitude of the �rst term in the r.h.s. of Eq. (��). On the other
hand, even the old EISCAT receiver was typically not that strongly band limited, and
Eq. (��) was only approximatively true. Indeed, when one talked about “band shape”
with that system, one just quoted the power response of the analog post detection �lter,
using as much of the frequency axis as was needed, irrespective of what the sampling
rate was.

With the new digital receiver, and especially with the new wide-band decimating
�lters, the non-factorization of the input-output relation can become quantitatively quite
bad, and the periodic-by-�nal-frequency band shape curves can become meaningless.
What one should show as a band shape of a digital receiver channel is not some periodic-
by- f 0s curve, but just the power response |HDDS( f )|2 of the equivalent �lter (which is
periodic by the primary sampling rate). Irrespective of what the �nal sampling rate f 0s
of the channel is, enough of the frequency axis inside the primary baseband should be
used to show the whole support region of that function.

We will now calculate the �nal spectrum in terms of the analog input spectrum, and
see under what condition we can still recover a �lter-like input-ouput relation. We han-
dle here only narrow-band signals like sinusoids, or the IS ion-line signal��; wide-band
noise is handled in Chapter �.

In the EISCAT receiver, the primary sampling rate fs is carefully selected with respect
to the width and location of the analog passband, to ensure that the Nyquist replicas
XA( f �m fs) do not overlap after the primary sampling. And (as seen in Fig. �), neither
do the components of the anti-aliasing passband �lter HA, which de�nes the passband,
overlap. Therefore, for the primary samples, the factorisation of Eq. (��) holds, and on
the primary baseband, one has the simple multiplicative relation

Xs( f ) ⇤ HA( f )XA( f ), for | f | < fs/2 . (��)

Here, both HA( f ) and XA( f ) are to be understood as being an appropriate replica of the
actual analog bandpass spectrum, deduced from Fig. �. For narrow-band signals, one
might take HA( f ) to be constant over the support of XA( f ). Thus the spectrum Xs( f )
that is the starting point in the digital processing proper, essentially is just the periodic
extension of the analog spectrum XA( f ), with period fs , as sketched in Fig. �.

The spectrum is then frequency translated in the NCOM, to X( f ) ⇤ Xs( f � fnco), and
then processed in the channel’s equivalent decimating �lter DDF, consisting of the post
detection FIR �lter HDDF and the decimator M. The result is the �nal spectrum Z( f ).
�� Strictly speaking, the IS signal is modelled as a random process, for which the spectrum |Z( f )|2 does

not exist. One has to use the power spectral density Gz( f ) instead, but such a thing we will meet only
later, in Section ?? of this article. Nothing in the present discussion depends on this technicality.
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From Eq. (��) and Eq. (��), we get the relation

Z( f ) ⇤ Z1( f ) + Z2( f )

⇤

M�1X

m⇤0
HDDF( f � m f 0s )X1( f � m f 0s ) +

M�1X

m⇤0
HDDF( f � m f 0s )X2( f � m f 0s ) (��)

between the input and the output of the DDF. We have explicitly denoted by X1 and
X2 the spectral components deriving by a suitable frequency shift—di�erent for X1 and
X2—from the negative-frequency component and the positive-frequency component of
the analog spectrum XA, as in Fig. �. Equation (��) is the complete recipe for predicting
the observable spectrum, given the channel’s equivalent �lter HDDF( f ), total decimation
M, and the analog input spectrum XA( f ). In most cases, the positive frequency part Z2
will be insigni�cant compared to the negative frequency part, and then one has the
relation

Z( f ) ⇤ Z1( f ) ⇤
M�1X

m⇤0
HDDF( f � m f 0s )X1( f � m f 0s ) . (��)

The case when Z2 is not insigni�cant results in the quip disturbance, and is handled in
Chapter � (Eq. (��), etc.).

In the case of a strongly band limited system, where the support of both the HDDF
and the signal in the primary baseband is essentially restricted to the narrower �nal
baseband, the r.h.s. of Eq. (��) factorizes as

Z( f ) ⇤
266664

M�1X

m⇤0
HDDF( f � m f 0s )

377775 ·
266664

M�1X

m⇤0
X1( f � m f 0s )

377775 . (��)

In this case, in the �nal baseband, one has the relation

Z( f ) ⇤ HDDF( f ) · XA
1 ( f � �1) ,when | f | < f 0s/2 , (��)

where the shift �1 from the analog passband to the �nal baseband is computed accord-
ing to Algorithm � on p. ��.

The �nite periodic summation of the �lter transfer function in Eq. (��) corresponds
to the �lter H0 ⇤ M

#HDDF of Eq. (��), the one I vaguely had in mind when preparing
the drawing for the [W��] paper. We have now seen that in order to there be any sense
in using such an H’ as a basis for the dashed band-shape line in [W��], the channel’s
input-output relation Eq. (��) must factorise. A su�cient condition is that HDDF and X
are strongly band limited to the �nal baseband. This situation is illustrated in Fig. ��.

For the factorisation, it is not necessary that both H and X are strongly bandlimited.
It is only necessary that the terms H(. . .m1) · X(. . .m2) resulting from expanding the
product in Eq. (��) are identically zero when m1 , m2. Thus, one can also consider
the situation where only X is strongly bandlimited. One could then formally restrict
HDDF to the support region of X, and use that restricted function in place of HDDF in
Eq. (��). This situation is sketched to Fig. ��. One could even argue that this case should
be a common one in practice, for in a well-de�ned incoherent scatter experiment, if
not the HDDF( f ), then at least the incoherent scatter spectrum itself should be strongly
band-limited, otherwise the IS signal is not correctly sampled. In fact, because of the
possibility of Doppler-shift, the �nal baseband should be considerably wider than the
IS spectrum.
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Some of the �lters in the EISCAT �lter collection are rather strongly band limited,
(Fig. ��, Fig. ��), some others less so (Fig. ��), and some are not band-limited at all (have
a constant power response), the �lter b����d� in Fig. �� is one of those.��

It should be also noted that even if the input signal itself were strongly band-limited,
the input noise never is (this case is handled in Chapter �). With such wide-band input
and a wide �lter, the channel’s input output relation no more factors as in Eq. (��). In
that situation, illustrated in Fig. ��, the power response of the decimated �lter H’ does
not provide a good measure of the band shape as far as noise is concerned. A good
measure of “band shape” does exist for the noise case, but it is given by the quantityP

m |HDDF( f �m f 0s )|2 (which I call the “noise response”) in Eq. (���) in Chapter �, rather
than the power response |Pm HDDF( f � m f 0s )|2.

Summarising our discussion about the band shape, in many cases it is possible to
argue that the dashed line in the [W��] receiver diagram represents some kind of band
shape. However, even if it possible to defend the dashed line, there is no point in actually
doing so. It is better to ditch that “�lter-shape” line from the �gure altogether. There is
too much pain for too little gain. In a multi-rate digital receiver, the channel’s equivalent
�lter (the PDF block of Fig. �) lives naturally in the primary baseband. When the �lter
shape is drawn, it should not be restricted to the �nal baseband only, but should be
shown everywhere in its support interval in the primary baseband. That is what the
ddfplan.m does. This is analogous to the practice of showing analog �lter shapes in the
whole region where they are essentially non-zero.

In fact, it can be outright dangerous to show H( f ) only within the �nal baseband;
there may be signi�cant parts of it outside the �nal baseband. One way to make a draw-
ing which shows simultaneously the �lter shape and the �nal signal spectrum, is to
simply plot both |Z( f )|2 and |H( f )|2 in a frequency interval around zero-frequency in
the primary baseband that is wide enough to cover all the frequencies where at least
one of those functions is non-zero to a signi�cant degree. In addition, it might be useful
also to plot the �lter’s noise response (using Eq. (���)), which shows how much noise
aliasing to the �nal baseband takes place.

For many purposes, we are interested in the spectra of the measured data in the �nal
baseband, like the quantity |Z( f )|2, rather than the �lter per se. We have well-de�ned
ways, such as Eq. (��) and Eq. (���), to compute those spectra. Those formulas incorpo-
rate the e�ects of both the �ltering and the decimation, and should be built-in directly
into the data analysis machinery, instead of the analysis trying to emulate pre-historic
single-rate signal processing.

Maybe this has now done in the EISCAT analysis, I don’t know. But I do know that
it was not done initially after ESR started operating. At that time, the GUISDAP anal-
ysis got its information about the channel �ltering via my Matlab routine get_impresp.m
(Listing �). That routine returns not the impulse response taps, but an “chip”-interpolated
continuous-time approximation of the impulse response.�� That continuous-time im-
pulse response is used to compute weighting functions for the lagged products of sam-
ples. This cannot be the correct way to do things in principle. Instead, one should assign

�� Most of the �lters currently in the collection are of the type of the �lter b��d���, the ion-line channel
�lter in beata, Fig. ��, where the � dB point is very near to half of the �nal sampling rate f 0s . But more
recently, IH has started using �lters that are more strongly band-limited, like the plasma-line channel
�lter b���d� in beata, Fig. ��.

�� I have more recently augmented the get_impresp.m script so that it returns also the impulse response
taps, as an extra parameter.
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the weights for the primary 15 MHz samples, using the impulse response of the whole
equivalent �lter, and then trace the ambiguity functions through the �ltering and deci-
mation steps, like we have traced the spectra here.

We have now handled enough theory of the EISCAT digital receiver to allow us in the
next Chapter to model quantitatively the data processing in the channel con�gurations
such as b����d� that gave the curiously oscillating output, shown in Figures � and �.

5 Modelling the disturbance in the quip experiment

The decimation � boxcar-in-time �lter b����d� was designed with the ddfplan program.
The program’s standard graphical output is shown in Figures �� and ��. Fig. �� shows
the impulse response hCIC and power response |HCIC( f )|2 of the hight order decimation
�lter; the impulse response hFDF and the power response |HFDF( f )|2 of the �r decimation
�lter; and the impulse response hDDF and power response |HDDF( f )|2 of the combined
equivalent �lter. The impulse response hDDF is computed from hCIC and hFDF using
Eq. (��). The ddfplan program does not use the explicit formulas like Eq. (��) for the
transfer functions. Instead, it computes them from the impulse responses, by evaluating
the de�nition Eq. (��) with a su�ciently long FFT.��

As seen from Fig. ��, the FDF �lter has only a single non-zero tap, and two zero taps
on its side. This is a trick to, in essence, to put the FDF in all-pass mode. The HSP�����
data sheet says that it is possible to put both the HDF and the FDF to bypass mode,
together or separately, but as far as I know, we have never been able to get this feature
working in EISCAT. Adding the M1 zeros (now two of them) between the taps of the
FDF, required by Eq. (��), does not change anything essential in this case; there is only
one non-zero tap in the FDF. But in general, the convolutions hCIC ⇤ hFDF and hCIC ⇤ h(M1)

FDF
can be very di�erent. One needs to keep this in mind e.g. when �guring out with pen
and paper what kind of impulse response to expect for the equivalent �lter, given hCIC
and hFDF.

With the FDF in all-pass state, the total impulse response is essentially equal to hCIC,
a boxcar �lter with three taps. Thus the �ltering operation to be applied to the 15 MHz
frequency-shifted sample stream is just the uniformly weighted moving average of three
samples. Decimation by three, to the �nal 5 MHz rate, means that the �nal output is
computed from the 15 MHz stream as the sum of the samples in adjacent blocks of three
samples. With hindsight, this arrangement cannot be expected to provide an awful lot
of averaging, that is, high-frequency suppression. But at the time when I designed the
�lter, I did not not notice the writing on the wall. I was happy to have found a way
to tweak ddfplan so that I could produce one of those boxcar �lters that my colleague
Markku Lehtinen has been favouring. Normally, the EISCAT �lters are not of boxcar
form, but are more or less “triangular” or “gaussian” in shape in the time domain. The
boxcar �lters have the nice property that their output noise is white if the input noise is
white (see Section ??). This makes error estimation more straightforward. On the other
hand, they are very far from the strongly band limited type of �lters in the sense of
Chapter �.

�� The FFT is a numerically very fast way to evaluate Fourier transforms such as the r.h.s. of Eq. (��) at the
set of uniformly spaced frequencies fn ⇤ n fs/N, n ⇤ 0 . . .N � 1. N is the “length” of the FFT, and must,
traditionally, be a power of two. If N is larger than the number of coe�cients hk , one adds a su�cient
number of zeros to the end of the sequence hk to satisfy the needs of the algorithm.
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The bottom right panel in Fig. � gives the total power response |HDDF( f )|2 of the �lter,
though only on the positive half of the primary baseband, from 0 to 7.5 MHz. The
negative part needs not be drawn. Because the �lter impulse response hDDF is real-
valued—that is, the “real part” and “imaginary part” of the signal path in the digital
receiver have identical �lters as indicated in Fig. �—the transfer function has hermitian
symmetry, and so the power response is symmetric around origin. It is noted that there
is a null in the response curve at the �nal sampling frequency 5 MHz, but that there
is not huge attenuation on either side of the null. However, Fig. � is logarithmic plot,
and it is di�cult to get proper feeling of the attenuation from it. Therefore, the second
standard output plot of ddfplan, Fig. ��, shows the �lter output also in linear scale.
Unfortunately the standard plot only shows the �lter in the �nal baseband. This needs
to be changed in future versions of ddfplan; a somewhat wider region must be shown.

Another somewhat dubious feature in the standard plots—which might or might not
need to be changed—is the way the total equivalent impulse response hDDF in the top
panel of Fig. ��, and similar, is drawn. The digital impulse response in reality is a se-
quence of taps hn . What is plotted in the panel “DDF Impulse Response”, is a linearly
interpolated line through the points (n⌧s , hn), where ⌧s is the primary sampling interval
1/ fs . This is probably alright when there are lot of the coe�cients hn , but the presenta-
tion becomes increasingly meaningless when there are only a few of them. It is probably
better to just show the points (n⌧s , hn), without connecting them, then.��

Having found the impulse response of the �lter b����d�—boxcar with three taps
followed by decimation by three—probably the simplest way to check what to expect
in the quip experiment, is by direct numerical simulation of the expected output in the
time domain; and that is what I initially did after the experiment.

Referring to Fig. � for notation, one generates samples xs
n , to represent the primary

�� MHz transmission samples, fresh out of the A/D. Phase coding was observed not to
relate to the oscillations, so we need not simulate the phase coding, but can just generate
real-valued sinusoidal samples

xs
n ⇤ 2 cos(2⇡ ftx⌧s n) ⇤ 1 ⇥ ei2⇡(� ftx)⌧s n + 1 ⇥ ei2⇡(+ ftx)⌧s n (��)

at the quip IF� frequency ftx ⇤ 10.1 MHz. The factor two in front of the cosine ensures
that we will have unit amplitude both for the positive and the negative frequency part
of the spectrum Xs( f ) in Eq. (��).

Next, one shifts the samples xs
n in frequency by multiplying them with a complex

sinusoid using fnco equal to ftx in Eq. (��). This results in samples xn . Then one �lters
the xn by taking convolution with the �lter coe�cients hk ,

yn ⇤

X

k

hk xn�k . (��)

Finally, one decimates by M (=�, now) to get samples at the �nal sampling frequency,

zn ⇤ yMn . (��)

For comparison to Fig. � of measured data, one also wants the power spectrum in
the �nal baseband, |Z( f )|2. One way to get Z( f ) is to start from the spectrum Xs( f ) of
��The Matlab script get_impresp.m that is meant to extract the equivalent impulse response from EISCAT

�lter �les, returns an “pchip” interpolated smooth curve to represent the impulse response.
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the A/D output samples xs
n . What the simulated spectrum Xs( f ) precisely looks like,

depends on how many terms one uses in the de�nition Eq. (�). If we take that sum from
�1 to 1, the spectrum becomes a line-spectrum, that is, two periodic summations of
delta functions, one summation containing �( f � f a

1 ), the other containing �( f � f a
2 ),

with f a
1 ⇤ � ftx and f a

2 ⇤ ftx. The periodic summation of frequency-dimensional delta
functions is the Dirac comb X fs ,

X fs ( f ) ,
1X

m⇤�1
�( f � m fs) . (��)

We have
Xs( f ) ⇤ X fs ( f � f a

1 ) + X fs ( f � f a
2 ) . (��)

When there are only a �nite number, N , of samples used for the spectrum, the delta
peaks broaden to have �nite width. In math terms, the two Dirac combs in Eq. (��)
are replaced by two Dirichlet kernels DN(), Eq. (��), multiplied by phase factors. These
functions have main peaks at the positions f a

k + m fs . The more samples are used, the
narrower the peaks and the lower the envelope of the side lobes associated with the
peaks. The be exact, with N samples xs

n in Eq. (��), n ⇤ 0 . . .N � 1, direct evaluation of
the spectrum from its de�nition, gives

Xs( f ) ⇤ ei⇡⌫1(N�1)DN(⇡
f � f a

1
fs

) + ei⇡⌫2(N�1)DN(⇡
f � f a

2
fs

) . (��)

For Eq. (��), we also normalised the spectrum by the number of samples, in order to
have the main peak magnitudes equal to unity rather than N .

Given the explicit expression Eq. (��) for the spectrum of the A/D samples, and the
�lter transfer function H( f ) calculated from Eq. (��), the spectrum Y( f ) on the primary
baseband could readily be calculated numerically. And then the spectrum at �nal base-
band could be calculated from the decimation recipe Eq. (��).

However, when one anyway was going the calculate the samples zn , the shorter way to
get Z( f )—the one I actually used—was to compute the power spectrum |Z( f )2 | directly
from the de�nition Eq. (�),

Z( f ) ⇤ 1
fs

N�1X

n⇤0
zne�i2⇡( f / fs )n . (��)

This discrete time Fourier transform is e�ciently computed using an FFT of su�ciently
large length to yield a smooth curve for plotting.

Figure �� shows the result of the simulation done for the EICAT UHF transmission
frequency F�� which was used in the quip experiment. In the analog passband, at the
A/D input, the frequency appears at ��.� MHz. In addition of time series plots of |zn |2
(the top panel), the �gure also shows the phase of the zn , as well as the power spec-
trum |Z( f )|2. Considering that the simulation is done in full double �oating accuracy
and assumes zero background noise, the agreement between data and simulation looks
qualitatively fairly good. I think that this comparison alone is enough to make one be-
lieve that the b����d� �lter works correctly (even though the hardware is driven beyond
the o�cial specs).

To make a quantitative comparison between the measured and observed beat be-
haviours, it is of interest to derive expressions for calculating the beat characteristics
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(instead of just estimating them from the simulated data). This we will do in the next
section. The section also serves as background for the program ddfsimu.m (Listing �)
that I have written to help to inspect especially the behaviour of wide-band �lters, better
than can be done with ddfplan.m. As a side-product, we will gain some insight into the
aliasing behaviour of the sampled beat, which, like any other aliasing, could be quite
confusing otherwise.

Modelling the beat

We assume a sinusoidal analogue input signal to the A/D, as in Eq. (��), but now not
necessarily on the transmission frequency ftx. Instead, we let it have any frequency frx in
the analogue passband. The signal could be, for instance, a Doppler-shifted echo from
a hard target, or could be an ionospheric plasma line echo. We assume that signal is
recorded for a long time, so that the analog spectrum will essentially be two delta peaks.
Thus, the analogue spectrum has narrow spectral components f a

1 ⇤ � frx and f 2
2 ⇤ frx,

of unit amplitude. After sampling, frequency-shifting in the NCO, and �ltering in the
digital �lter, the spectrum Y( f ) restricted to the baseband is

Y( f ) ⇤ H1�( f � f1) + H2�( f � f2) , (��)

where
Hk , HDDF( fk) . (��)

The frequencies fk in the primary baseband are computed with Algorithm �, which
involves the NCO frequency fnco. HDDF( f ) is the �lter’s transfer function computed
from Eq. (��). In decimation, Y( f ) is transformed to Z( f ) according to the decimation
theorem Eq. (��), but now there is no spectral overlap in the M � 1 time replication of Y,
so the spectrum still has just the two delta-peaks in the �nal baseband,

Z( f ) ⇤ H1�( f � f 01) + H2�( f � f 02) when | f | < f 0s/2 . (��)

This is the portion of the Dirac comb, of the form of Eq. (��), which has support in the
�nal baseband. The frequencies f 01 and f 02 in the �nal baseband can again be calculated
with Algorithm �.

The corresponding sample sequence zn is inverted from Z( f ) using Eq. (�), and is,
unsurprisingly, just two complex exponentials,

zn ⇤ H1ei2⇡ f 01⌧
0
s n + H2ei2⇡ f 02⌧

0
s n , (��)

where ⌧0s ⇤ 1/ f 0s is the �nal sampling interval. An aim in channel con�guration is to
make the magnitude of H2 insigni�cant compared to H1, and normally that is achieved.
But with the �lter b����d�, the second term in Eq. (��) cannot be ignored, and that
causes the beat.

In principle, the numbers zn are all that one really needs deal with, but nevertheless, to
inspect beat aliasing (see below), it is instructive to imagine that zn are just a (correctly)
sampled version of a continuous-time signal z(t),

z(t) ⇤ H1ei2⇡ f 01 t + H2ei2⇡ f 02 t . (��)

The signal z(t) is what we would presumably get if the receiver would be doing all of the
processing in the analogue domain, as in the EISCAT receiver of the old, where sampling
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was done in the very end, just before the bu�er memory (which was a remarkably big
box).

From Eq. (��), one can readily derive expressions for the signal power |zn |2 and the
phase � of zn . When frx is not equal to fnco, there is a linear phase variation in z, cor-
responding to the “Doppler-shift fD = frx � ftx, which one wants to remove in plotting
to make the variation due to the beat better visible. Note that because the receiver is
turned on the transmission frequency, and the frequency shift by the NCO is done so
as to move the negative frequency component of transmission to zero frequency, fD is
actually equal to the frequency f 01 (less than zero when frx is less than ftx). In the sim-
ulation, we consider frx as a known parameter (in actual experiments, it is of course a
parameter to be determined from data), so to remove the Doppler, one just multiplies
z(t) and zn by e�i2⇡ fDt and e�i2⇡ fD⌧0s n , respectively.

From Eq. (��), the signal power is found to be

|zn |2 ⇤ |H1 |2 + |H2 |2 + 2a cos(2⇡�⌫ n + ↵) . (��)

where
a ⇤ |H1H2 | , (��)

↵ ⇤ arg (H1H2) , (��)

and
�⌫ ⇤

f 02 � f 01
f 0s

. (��)

Eq. (��) implies that the mean value of the power is P ⇤ |H1 |2 + |H2 |2 and that the power
beat is strictly sinusoidal. Thus the relative peak to peak power variation dP/P , 4a/P
is given by

dP/P ⇤ 4 ⇥ |H1 ||H2 |
|H1 |2 + |H2 |2

. (��)

The beat frequency fbeat is equal to the frequency di�erence of the two spectral lines in
the �nal baseband, and the beat period Tbeat is its inverse,

Tbeat ⇤
1

| f 02 � f 01 |
. (��)

After removing the Doppler variation from z(t) to inspect the residual phase varia-
tion, we are left with time development

w(t) ⇤ H1 + H2ei2⇡( f 02� f 01)t (��)

and the corresponding sampled version wn ⇤ w(n/ f 0s ). The complex numbers w(t)
trace a circle which has radius |H2 | and centre at the complex number H1, as sketched
in Fig. ��. The minimum and maximum phase angle of w(t) is found from Fig. �� by
drawing tangents from the coordinate origin to the circle. This gives the peak to peak
phase variation as

P2P�� ⇤ 2 arcsin |H2 |
|H1 |

. (��)

From Eq. (��) and Eq. (��), the phase variation is periodic with the same period Tbeat as
the signal power, but is no more strictly sinusoidal in time.
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When applied to the situation of Fig. �, where the frequencies in the �nal � MHz wide
baseband are f 01 ⇤ 0 and f 02 ⇤ 0.200 MHz, |H1 | ⇤ H(0) ⇤ 1 and

|H2 | ⇤ |H(10.1 + 10.1 � 15)| ⇤ |H(5.2)| ⇤ 0.04714 .

these formula predict beat period �.��� µs, relative P�P power variation dP/P ⇤ 0.1881,
peak to peak phase variation in the beat P2P��=�.����, and the magnitude di�erence
of the two peaks in the power spectrum 20 ⇥ log 10(|H2 |) = -��.�� dB. Considering how
noisy the data is, these predictions appear consistent with the data. The observed spec-
tral peak is �.� dB higher than predicted, but in other, less-noisy, cases, like the one
shown in Fig. � (data) and Fig. �� (simulation), the agreement is better.

These formulas are incorporated into the ddfsimu.m script (Listing �) that provides
graphics about the location and strength of the two spectral peaks in the various stages
of processing in the digital channel, and also produces simulated time series data and
spectral plot (the simulated samples zn are computed directly from Eq. (��)). The �lter
|H( f )| is plotted for the whole primary baseband, and shading is used to indicate the
�nal baseband. Ddfsimu plots for comparison to data in Fig. � are shown as Fig. ��
and Fig. ��. The corresponding plots for comparison to Fig. � are shown as Fig. �� and
Fig. ��.

Beat aliasing

With f 01 and f 02 in Eq. (��) in the interval [� f 0s
2 ,

f 0s
2 ], their di�erence is in the interval

[� f 0s , f 0s ], twice as large. The implication is that if we consider the samples wn to be sam-
ples of a continuous-time signal w(t) (similarly, with the samples zn), the signal itself can
be “correctly sampled” in the sense that its frequency contents is in the Nyquist interval,
but the beat part in Eq. (��), might not be. The resulting aliasing can lead to surprising
changes in the apparent periodicity of the plotted sequences |zn |2 and arg zn when the
di�erence f 02 � f 01 is varied. For instance, with transmission and NCO at ��.� MHz, both
Doppler-shifted reception at ��.� MHz (Fig. ��) and at ��.� MHz (Fig. ��) produce the
same apparent beat period of �.�� µs of zn . Nevertheless, the signal spectrum correctly
identi�es the contributing frequencies in both cases.

If there is any lesson here, it could be that just looking at the apparent periodicities in
the sampled signal “by the eye” is not a good way to infer the actual spectral contents.
We were lucky initially when we �rst encountered the mysterious oscillations, in that
the actual situation was more like in Fig. �� than in Fig. ��. Aliasing is always a danger
when using sampled data, but here it can apparently pop up in a particularly nasty way:
the signal is correctly sampled, but one can still become confused by aliasing.

6 Noise in the digital receiver

In the previous sections, we have seen how a sinusoidal signal, and in general, a narrow-
band signal, is processed in the EISCAT digital receiver. Even though not very relevant
from the point of view of understanding our original problem, the beat oscillations,
we inspect here how wide-band noise that always is present in the analog input, gets
transformed in the digital receiver. This helps us make sense of the commonly displayed
EISCAT real-time plots which show spectra over the �nal baseband, computed from the
whole incoming stu�, consisting both the narrow-band signal and the wide-band noise.

��



The main purpose here is to show how the “background spectrum” G⇣( f )—spectrum
of the �nal baseband noise ⇣n in the absence of any signal—is related to the transfer func-
tion H( f ) of the digital �lter. We will see that for many �lters used nowadays in standard
EISCAT experiments, the spectrum is not very di�erent from the squared magnitude of
the transfer function, restricted to the �nal baseband. However, in general, this can be
a bad approximation, due to noise aliasing into the �nal baseband from the primary
baseband. For instance, for the very wide �lter b����d�, G⇣( f ) is constant as function
of f , provided that the �lter’s input noise, �n in Fig. �, is white noise.

We begin by reviewing some aspects of the autocorrelation function based machinery
that is needed to handle discrete-time noise.

For notation, refer to Fig. �. We denote by �n the noise samples in front of the FDF.
We denote by �n the samples out of the FDF but before the decimator. We denote by ⇣n
the noise samples after the decimator. The A/D sampling rate is fs , 15 MHz now. The
digital �lter has impulse response hn and transfer function H( f ), the latter de�ned over
the �� MHz primary baseband [� fs

2 ,
fs
2 ]. The decimator reduces the sampling rate by a

factor M, to f 0s ⇤ fs/M. We call the interval [� f 0s
2 ,

f 0s
2 ] the �nal baseband.

The noise is modelled as a random sequence, which is the discrete-time analogue of
the random process. Thus, the noise samples are considered to be random variables.
The basic tool of the noise analysis is the autocorrelation sequence gl , formed from the
expectation values of lagged products of the samples. For example, for the �nal base-
band noise sequence ⇣n , the autocorrelation sequence g⇣l is

g⇣l , E ⇣n⇣n+l , independent of n. (��)

We assume here zero-mean sequences; otherwise, one should subtract from ⇣ its mean
value E ⇣. Also, we do not divide by variance, so our “autocorrelation” should perhaps
more precisely be called the autocovariance. But the de�nitions vary anyway. An equiv-
alent way to write the de�nition (one used e.g. in Priestley��), is

g⇣l ⇤ E ⇣n⇣n�l .

As indicated, we assumed that the sequences are stationary, so that the expectation value
of the lagged product only depends on the lag l, but not on the time n. The noise is said
to be white if the autocorrelation is non-zero only at lag l ⇤ 0; that is, if distinct samples
are uncorrelated. Autocorrelation zero-lag is the expected noise power P,

g⇣0 ⇤ E |⇣n |2 , P⇣ , for all n . (��)

We de�ne the noise spectrum G( f ) is the discrete-time Fourier transform of the auto-
correlation sequence gl , divided by the corresponding sampling rate. For example, for
the �nal noise sequence ⇣n , the spectrum is

G⇣( f ) , 1
f 0s

X

l

g⇣l e�i2⇡( f / f 0s )l . (��)

The spectrum is periodic by the appropriate sampling frequency, f 0s in the case of G⇣.
Analogously to Eq. (�), we have included normalisation by the sampling rate into the
��M. B. Priestley, Spectral Analysis and Time Series, Academic Press, ����.
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de�nition (but not into the notation G⇣( f )). With this normalisation, the integral of G( f )
over a Nyquist interval gives the power,

Z f 0s

0
G⇣( f )d f ⇤ P⇣ . (��)

Therefore, the “noise spectrum” G( f ) more precisely is called the noise power spectral
density. It has the unit V2/Hz, just as is the case with continuous-time noise.�� The
inverse relation to Eq. (��) is

g⇣l ⇤

Z f 0s

0
G⇣( f )ei2⇡( f / f 0s )l d f . (��)

For white noise, it follows from Eq. (��) and Eq. (��) that the power spectral density
is constant,

G( f ) ⇤ P
fs
, for white noise. (��)

The converse is also true. When G( f ) ⇤ const, the integral in Eq. (��) becomes equal to
fs�l ,0. Therefore, if the spectral density is constant, the autocorrelation has only its zero
lag nonzero, and thus the noise is white.

In what follows, we will for the most part assume that the complex-valued noise �n
into the channel’s decimating �lter is white, so that its autocorrelation sequence has only
the zero lag non-zero, and the power spectral density is constant,

G�( f ) ⇤ P�

fs
. (��)

This should be a fairly good approximation in the EISCAT receiver. Even though the
anti-aliasing analog bandpass �lter is only slightly over 7 MHz wide, the analogue signal
is a real-valued signal, and therefore has total spectral coverage of twice that much.
Due to the carefully selected IF passband locations in the bandpass sampling, after the
sampling, the frequency axis is covered quite uniformly by copies of the passband, as
indicated schematically in the top panel of Fig. �. This implies that provided that the
noise into the anti-aliasing �lter is of fairly uniform power spectral density over the
passband, and the anti-aliasing �lter itself is reasonably �at, then also the sequence of
the primary noise samples �s

n , just after the A/D, has a fairly uniform spectral density
and therefore, is reasonably white.

I will subsequently simply assume that the noise after the A/D is white, but for com-
pleteness, I will brie�y outline, without proofs, the steps that are needed to be able to
actually inspect the whiteness question quantitatively.

A sensible starting point is be to assume that the noise, call it �A(t), in front of the
receiver’s anti-aliasing �lter is stationary white noise. In the analog domain, noise is
described using a continuous-time version g(t) of the autocorrelation Eq. (��), so that
e.g. for the noise �A(t),

g�
A(t) , E �A(t0)�A(t0 + t) . (��)

For stationary noise, the time instant t0 in Eq. (��) does not matter. In the EISCAT system,
we would not need the complex conjugation here, either, for the noise �A(t) is real-
valued; but it doesn’t hurt.
�� In the EISCAT real-time plots, the unit is taken to be K/Hz.
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The continuous-time white noise is characterised as having in�nite power and zero
correlation length. This state of a�airs can be expressed using the Dirac delta-function
as

g�
A(t) ⇤ �A�(t) . (��)

Because the delta function has dimension of �/s = Hz, the constant of proportionality
�A has dimension of V2/Hz. �A is the power spectral density of the white noise (see
Eq. (��)). Typically, it is quanti�ed via the system noise temperature Tsys, as

�A
⇤ gain ⇥ kBTsys . (��)

The constant of proportionality is an overall receiver “gain factor”, which one normally
needs not worry about. Its actual value will cancel out from the �nal formulas where
it enters, typically, because those formulas involve only power measured relative to a
calibration power.

The continuous-time noise spectrum G�( f ) is de�ned as the Fourier transform of the
autocorrelation function g�(t), so that for the white noise �A(t) of Eq. (��), one has

G�
A( f ) ,

Z 1

�1
g�

A(t)e�i2⇡ f t dt ⇤ �A . (��)

The analog anti-aliasing �lter is described by a transfer function HA( f ). In general, an
analog �lter with transfer function H( f ) changes the power spectrum via multiplication
by |H( f )|2, a recipe formally identical to Eq. (���), below. Thus the spectrum of the noise
�a(t) after the �lter, just in front of the A/D converter, is

G�
a ( f ) ⇤ |HA( f )|2G�

A( f ) ⇤ �A |HA( f )|2 . (��)

In sampling, with sampling frequency fs , the analog noise spectrum G�
a ( f ) becomes

periodic with period fs , via a periodic summation similar to the summation in the sam-
pling theorem, Eq. (�).

G�
s ( f ) ⇤

1X

m⇤�1
G�

a ( f � m fs) . (��)

If the input is white noise, Eq. (��) becomes

G�
s ( f ) ⇤ �A

1X

m⇤�1
|HA( f � m fs)|2 . (��)

Eq. (��) gives quantitatively the sought-for noise spectrum at the start point of the digital
processing. One might call Eq. (��) the sampling theorem for noise.

It may be noted that for Eq. (��) to be true, �a(t) does not really need to be “noise”,
but can be any stationary signal for which an autocorrelation function can be de�ned as
in Eq. (��). Thus �a(t) could also be the incoherent scatter signal in the case when no
coding is used in transmission. (With coding, things become more complicated, a case I
will not attempt to cover here.) If the IS signal is band-limited to the primary baseband—
and it surely should be, for it should be band-limited even to the �nal baseband—then
the replicas G�

a ( f �m fs) when m , 0 to not contribute anything to the baseband m ⇤ 0,
and the discrete-time IS spectrum is simply the same as the analog spectrum.

The power response |HA( f )|2 of the anti-aliasing �lter is a known—or at least knowable—
quantity in a well-de�ned system such as EISCAT. Thus Eq. (��) can be used to inspect
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how white the spectrum G�
s ( f ) actually is. Here we will take it to be is precisely constant

everywhere,

G�
s ( f ) ⇤ P�

s

fs
(/ �A) . (��)

We denoted by P�
s is the noise power E (�s

n)2 after the A/D.
With the noise �s

n white, we do not need in our analysis pay much attention to the
complex multiplication in the NCOM module of Fig. �. White noise does not change in
any essential way in the frequency shifting. To verify this in the time domain, we note
that with

E �s
n�

s
n+l ⇤ �l ,0P�

s
,

after the frequency-shifting multiplication of Eq. (��) we have

E �n�n+l ⇤ ei2⇡⌫nco l ⇥ E �s
n�

s
n+l ⇤ �l ,0P�

s
. (���)

Thus also the frequency-shifted noise �n , which is the input for the decimating �lter, is
white and has power equal to P�

s .
We will now inspect how the noise spectrum transforms in the decimating digital

�lter, �rst in the �lter hn which converts �n to �n , and then in the decimator M which
converts �n to ⇣n . In the �ltering by H( f ),

G�( f ) ⇤ |H( f )|2G�( f ) , (���)

and in decimation by M,

G⇣( f ) ⇤
M�1X

m⇤0
G�( f + m f 0s ) . (���)

The spectra G� and G� are periodic by the primary sampling frequency fs , while the
�nal spectrum G⇣ is periodic by the �nal sampling frequency f 0s . We will prove Eq. (���)
and Eq. (���) at the end of this chapter. Combining the two equations gives the main
result of this chapter

G⇣( f ) ⇤
M�1X

m⇤0
|H( f + m f 0s )|2G�( f + m f 0s ) . (���)

Equation (���) shows how an input power spectral density G�( f ) transforms in a deci-
mating digital �lter with transfer function H( f ), decimation M and �nal sampling rate
f 0s . For white noise input, G�( f ) is constant, and Eq. (���) simpli�es to

G⇣( f ) ⇤ ��
M�1X

m⇤0
|H( f + m f 0s )|2 , (���)

where
�� , G�( f ) ⇤ P�/ fs , for all f ,

is the power spectral density at the �lter’s input.
Eq. (���) allows one to predict the shape of the “background spectrum”. The shape of

the background spectrum can di�er drastically from the shape of the power spectrum
|H( f )|2 that is relevant for narrow-band signals. For example, G⇣( f ) is constant for the
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decimating-by-M �lters like the b����d� which have constant impulse response of M
taps. That this particular type of decimating �lter maps white noise to white noise can be
argued without any computation. In these devices, an output sample ⇣n is just the sum
of M input samples �n in such a way that each consecutive group of M input samples
produces a new output samples. Therefore the blocks of input samples used for distinct
output samples have no common samples. For white noise samples, that implies that
also the output samples are uncorrelated, and hence have a constant power spectral
density.

The �lters with boxcar impulse response have |H( f )|2 of the general form of Dirichlet
kernel DM(⇡ f / f 0s ), de�nitely not a constant. Eq. (���) shows how the shape change
happens in decimation: spectral power is aliased to position f in the �nal baseband
from all the positions f + m f 0s in the primary baseband where the �lter H( f ) is nonzero.

The above argument for the constant �nal spectral density shows how decimating
a sequence reduces inter-sample correlations; in the above boxcar case, all the corre-
lations were removed. As a consequence, the decimated sequence tends to be more
“white” than the original sequence, and hence, its spectrum tends to be more �at. Note,
though, that it is only the amount of correlations and the spectral shape that change in
decimation. The total power does not change, for

P⇣ ⇤ E |⇣n |2 ⇤ E |�Mn |2 ⇤ P� . (���)

Noise equivalent bandwidth

The last topic I’m going to mention in this article is the concept of noise equivalent
bandwidth, Beq, though I’m not sure of how much use, or interest, that is in the EISCAT
context. I �rst encounter the concept in my space debris work when ESA measurement
modellers wanted to know what is the value of Beq in EISCAT measurements. So I added
Beq to the set of output parameters of the ddfplan.m script (though, until recently, it was
sometimes computed wrongly).

A receiver’s noise equivalent bandwidth is a �gure of merit that can be to some degree
useful if one wants to know what kind of signal-to-noise ratio,

SNR ⇤ Psig/Pnoise (���)

one can expect in a measurement, and wants to estimate Psig from the radar equation,
and the Pnoise using the formula based on system temperature and some kind of “re-
ceiver bandwidth” B,

Pnoise ⇤ kBTsys ⇥ B . (���)
Then the quantity that should be plugged into Eq. (���) in the place of B is the receiver’s
noise equivalent bandwidth.

The quantity kBTsys has dimension W/Hz and the idea is that it represents the power
spectral density of the incoming white noise into the receiver. Some �ltering takes place
in the receiver, and the e�ect of the �lter is summarised by the noise equivalent band-
width. The Beq is the width of a hypothetical boxcar-in-frequency �lter that let’s through
the same amount of noise to the �nal baseband as the actual �lter. With white noise at in-
put, according to Eq. (��), Eq. (���) and Eq. (���), the �nal noise power P⇣ is computable
as

P⇣ ⇤ P� ⇤ G� ⇥
Z fs

0
|H( f )|2d f (���)
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where G� is the power spectral density of the input noise.
By comparison of Eq. (���) and Eq. (���), one might hastily conclude that the noise

equivalent bandwidth is just the integral
R
|H |2d f in Eq. (���). However, that conclusion

does not take into account that the apparent “power” P⇣ ⇤ E |⇣n |2 also depends on
the overall gain of the receiver, not just the shape of the gain curve |H |2. This might
not matter in the SNR computation, for whatever the absolute scale of the gain, both
signal and noise would presumably be subject to the same scale.�� But to get a measure
for receiver bandwidth that does not depend upon the gain scale, is is customary to
normalise the gain to unity at zero frequency in the power integral. Thus, the noise
equivalent bandwidth of a digital �lter in general is to be computed from the (possibly
non-normalised) �lter transfer function H( f ) as

Beq ⇤
1

|H(0)|2

Z fs

0
|H( f )|2d f . (���)

From the Parseval’s theorem for Fourier series, this can also be expressed directly in
terms of the �lter coe�cients, as

Beq ⇤ fs

P |hn |2
|P hn |2

. (���)

For an M-tap boxcar-in-time, decimation-by-M �lter such as the b����d�, Eq. (���) gives
Beq ⇤ fs/M ⇤ f 0s . This is consistent with our earlier result that the noise spectrum is
constant in the �nal baseband of width f 0s .

Proof of the noise filtering theorem, Eq. (101)

Abbriviating f / fs ⇤ ⌫; using the de�nitions of the noise spectrum; the de�nition of the
noise autocorrelation; and the de�nition of the �ltering, we get

fs G�( f ) ⇤

X

l

g�l e�i2⇡⌫l

⇤

X

l

E �n�n+l e�i2⇡⌫l

⇤

X

lkk0
hk hk0 E �n�k�n+l�k0 e�i2⇡⌫l

⇤

X

lkk0
hk hk0 g

�
l+k�k0 e�i2⇡⌫l

Then changing order of summation to make the l sum �rst, and changing in the l-sum
the summation index to l0, l0 ⇤ l + k � k0, the triple sum separates to the product of three
sums, giving the asserted result.

fs G�( f ) ⇤

X

kk0
hk hk0(

X

l0
g�l0e

�i2⇡⌫l0)e+i2⇡⌫ke�i2⇡⌫k0

⇤ H( f )H( f ) ( fs G�( f )) .

�� This assumption is actually not safe in EISCAT where the �lters are not at all �at in frequency. The
assumption does not take into account that the narrow-band signal can experience quite di�erent gain
depending upon it’s Doppler-shift. Then one has anyway to be aware of the gain shape |H( f )|2 for all
f , and the whole concept of noise-equivalent bandwidth becomes rather unnecessary.
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Proof of the noise decimation theorem, Eq. (102)

The result is analogous to the decimation theorem for the spectra of the deterministic
signal, Eq. (��), and follows from the de�nition of the spectrum as the Fourier transform
of a sequence, and the de�nition of decimation. First we note that from the de�nition of
decimation as picking every M’th element of the sequence,

⇣n ⇤ �Mn , (���)

together with the assumed stationarity of the noise, a result similar to Eq. (���) holds
also for the noise autocorrelation,

g⇣l ⇤ E ⇣n⇣n+l ⇤ E �Mn�Mn+Ml ⇤ g�Ml . (���)

Then, starting from the right-hand side of Eq. (���), we have

M�1X

m⇤0
G�( f + m f 0s ) ⇤

1
fs

X

m

X

l

g�l e�i2⇡ f +m f 0s
fs

l

⇤
1
fs

X

l

*
,g�l e�i2⇡ f

fs
l

M�1X

m⇤0
e�i2⇡ m

M l+
- . (���)

On the right-hand side of Eq. (���), the sum over m equals M when l is a multiple of M,
and is zero otherwise, so in the l-sum most terms drop out. Then using f 0s ⇤ fs/M and
Eq. (���), we get from Eq. (���)

M�1X

m⇤0
G�( f + m f 0s ) ⇤

M
fs

X

l

g�Mle
�i2⇡ f

fs
Ml

⇤
1
f 0s

X

l

g�Mle
�i2⇡ f

f 0s
l

⇤
1
f 0s

X

l

g⇣l e�i2⇡ f
f 0s

l

⇤ G⇣( f ) ,

as we claimed in Eq. (���).

7 Summary

I have provided a fairly detailed functional description of the EISCAT digital receiver,
augmenting the very short account given in the ���� paper of Wannberg et al., about the
ESR receiver. The model of the system built here has allowed me to compute quantita-
tively the expected output of the receiver both for sinusoidal signals and for noise. I have
especially inspected what kind of output to expect in the case of the quip experiment,
which used the �lter b����d� that provides � MHz �nal sampling rate.

The model is able to reproduce the observed “disturbance” very well, so I consider the
disturbance mostly understood. It is simply caused by beat-type interference between
two complex-valued sinusoidal signals in the �nal baseband. Both these complex sinu-
soids derive from the single original real-valued analog sinusoid, which has two spectral

��



component, symmetric around zero in the analog domain. In the detection, both of the
those two components map to the baseband. Normally, the channel’s post detection �l-
tering should, and does, kill the higher-frequency component. But the new �lter is so
wide that not enough suppression of unwanted frequencies can take place.

As about the consequences, I think the jury is still out. For one thing, it is possible to
make other �lters with � MHz sampling rate, that are narrower than the boxcar-in-time
b����d�. But it seems di�cult to get rid of the beat altogether even then. A related issue
is that if one wants to make more use of boxcar-in-time �lters in general, as I would like
for the space debris work at least, the beat problem can creep-in already with a 1 MHz
sampling rate, depending on the precise frequencies of transmission and the signal; and
will necessarily become a problem with 2.5 MHz rate. (The 1 MHz �lter that I have been
using so far, b���d��, is not a�ected by the beat).

So for the fastest sampling rates, the real question is, does the presence of the beat
make data unusable. In high-accuracy space debris work, the beat probably would dis-
tort the predictability of the pulse response shape, which I use for high range accuracy.
But it might be possible to �lter the unwanted spectral component out in the analysis
phase.

I state above that the disturbance is “mostly” understood. That means that I can pre-
dict the spectrum correctly at a level that is about ��–�� dB down from the main spectral
peak. But as Fig. � shows, in the data taken when the transmitter was operating, there
are regular-looking features in the spectrum that do not �t in the model.

On the �50 dB level below the wanted signal, the unwanted signals should not be
of any consequence in any practical EISCAT measurement. It would nevertheless be of
interest so �nd out where those features come from. This story might get a part two,
some day.
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Figure �: Experiment quip in May ����, channel 1 transmission-sample signal. These
transmission-monitoring voltage level data on the EISCAT Tromsø UHF
radar are from a 640 µs 4-phase code, taken with the �nal sampling rate
of 1 MHz. The channel’s decimating �lter was the decimation-by-15 �lter
b���d�� (Fig. ��), which had been tested earlier in several satellite measure-
ments. The top panel shows the squared magnitude of the samples, the bottom
panel shows the phase of the samples. The time counts from the beginning of
the radar cycle. By and large, these data were as expected.
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Figure �: Quip, channel 3 transmission data. These data are from the same code, and
actually literarily the same primary 15 MHz A/D samples, as in Fig. �, but
decimated to 5 MHz �nal sampling rate, using the new, poorly tested wide-
band decimating �lter b����d� (Fig. ��). This �lter has a large bandwidth,
4.7 MHz. Therefore, even though the data immediately appeared “noisier”
than the 1 MHz data in Fig. �, during the experiment is was thought that this
probably was OK. But after the experiment, a zoom-in, as in Fig. �, revealed
that the “noise” was not so much noise at all, but a rather regular oscillation.
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Figure �: Quip, the wide band transmission samples at 10.1 MHz zoomed-in. The top
two panels are a zoomed-in version of Fig. �, zoomed into the longest constant-
phase segment of the code. The plots reveal an unexpected oscillatory be-
haviour both in the squared magnitude and in the phase of the samples. In
the second panel, the peak-to-peak variation of the phase angle is about 5 de-
grees (the mean phase is set to zero in the plot). The period of the oscillations
in the top two panels is about 5 µs. The maximum peak-to-peak variation of
the power in the top panel is about 22 % around the mean power. The bottom
panel is power spectrum computed from the samples in the longest constant-
phase segment of the code and normalised to maximum value of 0 dB. Unfor-
tunately, I understood to start plotting spectra only after we had already come
to grips with the oscillation problem, after several days of stressful confusion.
In the spectrum, there is the expected DC peak, but in addition, an unexpected
peak at about +200 kHz. This could have been a crucial clue.
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Figure �: Wide-band transmission samples at 10.4 MHz. To generate ideas about what
the oscillating disturbance on the � MHz channel in quip might depend on, the
transmission frequency was changed from F�� as in Fig. � to F�� and the re-
ceiver’s tuning was correspondingly changed from 10.1 MHz to 10.4 MHz. The
period of the disturbance decreased to about 1.25 µs from 5.00 µs. The relative
peak-to-peak power variation increased to about 65% from 22%, and the peak-
to-peak phase variation increased to about 20� from about �ve degrees. The
actual transmission peak power was 1.66 MW for these data. Between Fig. �
and Fig. �, nothing changes in the �lter itself, so this test strongly suggested
that the disturbance was not generated by some malfunction of the �lter, but
had somehow to be present in the incoming analog signal. But then, on the
other hand, why were we not seeing it in the � MHz data on channel �?

��



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−70

−60

−50

−40

−30

−20

−10

0

10

Freq (MHz)

N
o

rm
a

liz
e

d
 p

o
w

e
r 

sp
e

ct
ru

m
 (

d
B

)

Figure �: Quip, a higher-sensitivity spectrum of the wide band data. When inspecting
the oscillating disturbance, at some point also the �-phase phase shifter was
disabled during transmission by disconnecting its control signals. This made
the transmission e�ectively a 640 µs longpulse, which allows the whole pulse
easily to be used for spectrum computation. This �gure is basically a higher-
sensitivity version of the spectrum shown in Fig. �. In addition of using a
longer FFT, the data are also integrated over a few pulses. The maxima of the
four peaks, as read from the FFT curve, are at (0.0000, 0.0000), (0.4004,�47.23),
(0.7999,�14.44) and (1.200,�48.79). Today, we have a good understanding of
the two main peaks. Where the two minor peaks come from, requires further
study.
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Figure �: The EISCAT digital channel, overview and notations. Functionally, each
EISCAT digital receiver channel consists of a numerically controlled oscilla-
tor (NCO) and complex multiplier module (NCOM), the post detection �lter
(PDF) which is a �nite impulse response digital �lter, a decimator (M), and
a memory bu�er (BM) for temporal storage of the channel output. The dot-
ted red line encircles the modules that are implemented in hardware as the
EISCAT “channel board”, designed by Markku Postila in the early ����s at the
EISCAT Sodankylä site. The PDF and the decimator summarise the function-
ality of the HSP����� decimating digital �lter (DDF) that, together with the
HSP����� NCOM, forms the core of the channel board hardware. There are
separate, but identical, DDFs for real and imaginary part to precess complex-
valued digital data after the NCOM. The �gure also shows the anti-aliasing
�lter and the analogue to digital converter in front of the digital channel. In
the EISCAT receivers, the output of the A/D is copied to several channels,
but only one channel is shown in this �gure. The A/D samples continuously
at fs ⇤ 15 Msamples/s, using the second intermediate frequency (IF�) of the
EISCAT analogue receiver as its input. In front of the A/D, there is the anti-
aliasing bandpass �lter, which in the UHF system is about 7 MHz wide and
centred at 11.2 MHz. Between the decimator M, which reduces the sampling
rate from the 15 MHz primary rate fs to the �nal sampling rate f 0s ⇤ fs/M, and
the output bu�er BM, there is gating logic (not shown) that allows the data
stream to the bu�er be blocked as required, with 100 ns time resolution. The
various f -labels at the top of the diagram give the notion used in the main text
to refer to the frequencies occurring in the processing of a sinusoidal analog
input signal xa(t). The spectral processing begins from the spectrum Xa( f ) of
the real-valued analog signal. That spectrum has two delta-function like com-
ponents, at f a

1 and f a
2 ( f a

1 ⇤ � f a
2 ). The processing �nishes with the spectrum

Z( f ) of the �nal decimated complex-valued sampling stream zn . Under the re-
ceiver blocks in the diagram, the symbols xA(t) . . . zn give the notation for the
time domain signal in various stages of processing. The symbols �A(t) . . . ⇣n
refer to the time domain noise. The symbols G..( f ) refer to the power spectral
density of the noise.
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Figure �: EISCAT digital channel, a programmer’s block diagram. The channel con-
sists of a numerically controlled oscillator and complex multiplier module
(NCOM), a decimating digital �lter (DDF), and an output bu�er. The NCOM is
a single chip, Intersil’s HSP�����. The DDF is implemented by two HSP�����
decimating digital �lters, one for the real part and one for the imaginary part
of the NCOM output.The HSP����� consists of two decimating �lters, termed
the HDF and the FDF in this document (in the HSP����� data sheet, the latter
is referred to as “FIR”, which is an unusably generic name). Both decimating
�lters are shown here in the canonical representation: a �lter, which is labelled
by HCIC and HFDF here, followed by a decimator, M1 and M2, respectively.
These notations are also used in the ddfplan.m Matlab script that is used in
EISCAT to prepare �lter con�guration �les, which are known as the “�r �les”
in EISCAT. The “high-order decimating �lter” HDF allows decimation M1 up
to 1024 and down (so it now seems) to 3. The �lter designer’s control over the
impulse response of the HCIC is very limited. The impulse response is con-
strained to be equivalent to the impulse response of a cascade of N1, from 1 to
5, boxcar �lters, each with M1 taps. The designer can only specify the number
of the �lters in the cascade and the decimation factor. The “�r decimating �l-
ter” FDF provides decimation M2 from 1 to 16, and up to 512 independently
de�nable coe�cients, to build a symmetric �lter HFDF with twice that number
of taps. However, the ddfplan.m script does not allow even that much �exi-
bility, for it models also the FDF as a cascade of N2 boxcar �lters, each with L2
equal taps (the decimation factor M2 can be di�erent from L2, though). The
script provides graphical output about the �lter shape |HDDF( f )|2, etc (see, e.g.
Fig. �� and ��), and the normal way of using the program is to vary the �ve in-
put parameters until the result looks acceptable for the experiment in question.
The program then generates the required �lter con�guration �le, which by
EISCAT convention is named as bxxxdmmm.�r, where xxx is approximately
the 3 dB point in kilohertz and mmm is the total decimation factor M1M2.
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Figure �: Frequency mapping on an EISCAT digital channel. The analogue passband is
centred at (about) 11 MHz, and has 3 dB width (about) 7 MHz. There �gure has
been drawn as if these where the exact values. Both positive and negative fre-
quency parts are marked in the �gure. In sampling, the passband becomes pe-
riodic by the 15 MHz sampling frequency. The bottom part of the �gure shows
how the spectrum of a narrow band analogue signal is transformed when
traversing the receiver stages shown in Fig. �. In the drawing, the analogue
signal is at the centre frequency 11 MHz of the passband so that the analogue
spectrum Xa( f ) has support only near f a

2 ⇤ +11 MHz and f a
1 ⇤ �11 MHz.

In sampling, Xa becomes periodic by the sampling frequency fs and becomes
the spectrum Xs . The two components of the periodic function Xs( f ) that fall
within the Nyquist zone around DC, marked as the primary baseband in the
�gure, have frequencies f s

1 and f s
2 . The sampled signal is translated by the

amount fnco in the channel’s NCOM unit, and the spectrum becomes the func-
tion X( f ). In this example, the NCO value is chosen so as to move a negative
frequency component to zero frequency, so fnco ⇤ 11 MHz, f1 ⇤ 0 MHz, and
f2 ⇤ 7.0 MHz, near the edge of the primary baseband. Next, the signal is �l-
tered in the PDF module, which amounts to multiplication of X( f ) with the
�lter transfer function H( f ), giving the spectrum Y( f ). Ideally, the high fre-
quency component at f2 should be completely extinguished, but in practise
this succeeds only to a degree. Finally, in the decimator M, the spectrum Y( f )
is periodically replicated by the decimation factor (M ⇤ 3 in this drawing), re-
sulting in the frequencies f 01 ⇤ 0 and f 02 ⇤ 2.0 MHz in the �nal baseband. The
�nal baseband has width f 0s ⇤ fs/M, 5 MHz in this drawing.
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Figure �: The original EISCAT Svalbard Radar digital channel. The �gure is a partial
reproduction of Figure � in the ���� Radio Science paper by Wannberg et al.
on the brand new ESR system. The original caption labels the Figure as being
a “functional block diagram of the ESR receiver”. In the initial ESR system, the
primary A/D sampling rate was 10 MHz, and the roughly 4 MHz wide anti-
aliasing �lter was centred at 7.5 MHz. The actual digital channel hardware
after the A/D was essentially the same as in all present-day EISCAT systems.
Assuming that Fig. � and Fig. � of the present article are correct, can you sug-
gest any improvements to the Figure? Answer: The dashed “�lter line” from
the bottom right panel should be removed, and a second decimator should be
added to the bottom left diagram, between the lowpass �lter and the sample
bu�er.
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Y (f) = H.X(f)

Z(f) = M�.Y (f)

X �(f) = M�.X(f)

H �(f) = M�.H(f)

Z �(f) = H�.X �(f)

Figure ��: Processing a strongly band limited signal by a narrow �lter. Here both the
�lter H( f ) and the signal X( f ) have bandwidth less than the �nal sampling
frequency, so that their support in the primary baseband (light-colorer stripe)
stays strictly within the �nal baseband (dark-coloured stripe). In this case, it
is possible to envisage a �lter, H0( f ), that is periodic by the �nal sampling
frequency f 0s (= fs/3 in this illustration), and produces the correct �nal spec-
trum Z( f ) in the �nal baseband. The �lter H0( f ) is the periodic extension of
H( f ), with period f 0s , as in Eq. (��). Here we have denoted by M

# the “dec-
imation operator”. Its e�ect in spectral domain is to perform the �nite pe-
riodic summation. The �lter H’ operates to a �ctitious signal x0n , which has
the spectrum X0( f ) and could be the decimated version of the actual input
signal xn . Because X is strictly band-limited, decimation does not distort it.
In essence, the arti�cial scheme, the bottom panel of the Figure, begins with
the decimation and does �ltering afterwards, while the actual system in the
top panel performs these operations in the opposite order. These systems are
not equivalent in general, but are equivalent for strongly band-limited input
signals and narrow �lters. The �lter-related dashed line in the bottom right
panel of Fig. � could correspond to |H0( f )|2. So, to get the [W��] drawing,
we need to pick the H0( f ) from the bottom panel of this �gure, while still can
take the signal Z( f ) from the top panel. With hindsight, this seems rather
contrived way of doing things. If one necessarily wants to draw some �lter
shape to the �gure, one should just draw |H( f )|2, as in the top panel of this
�gure.
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Figure ��: Processing a strongly band limited signal by a wide �lter. Even if the �lter is
not strictly band limited to the �nal baseband, the signal should typically be.
In this case one can consider the dashed line of [W��] to represent the power
response |H00( f )|2 where the �lter H00( f ) is found by setting H( f ) to zero out-
side the �nal baseband, and then extending the result periodically by the �nal
sampling frequency. The �lter H00( f ) operates on the �ctitious samples x0n of
Fig. ��, which already represent the �nal sampling rate but have the spectrum
X0( f ), not to the original primary samples, which have the spectrum X( f ). In
essence, the arti�cial scheme begins with the decimation and does �ltering
afterwards, while the actual system performs these operations in the oppo-
site order. These systems are not equivalent in general, but are equivalent for
strongly band-limited input signals. The arti�cial scheme is depicted in the
lower panel of the �gure, while the upper panel illustrates the actual trans-
formations performed by the �lter and the decimator in the EISCAT receiver.
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Figure ��: Processing a wide-band signal by a wide �lter. If neither the �lter nor the
�lter input are strictly band limited to the �nal baseband, the only sensible
strategy to compute the spectrum in the �nal baseband is to explicitly take
into account both the �lter and the decimator. Here, we have assumed that
the �lter input is white noise, so that the initial power spectral density G�( f )
is constant. In the �ltering, the density is multiplied by the �lter’s power re-
sponse |H( f )|2, to produce the power spectral density G�( f ). Then in decima-
tion, G�( f ) is periodically extended, with period equal to the �nal sampling
rate f 0s . When the �lter H( f ) is wider than the �nal sampling rate, aliasing
of spectral density to the �nal baseband takes places, resulting in the spec-
trum G⇣( f ) which is periodic by the �nal sampling frequency, as it must be.
The shape of the �nal spectrum needs not to have much in common with
the �lter’s power response shape. For instance, for “ideally matched“ box-
car �lters such as the �lter b����d� (Fig. ��), for which the impulse response
length is equal to the sampling interval (more precisely, the decimation M
is equal to the number of �lter taps), G⇣( f ) is a constant, while |H( f )|2 is of
type

f sin(⇡M⌧s f )
M sin(⇡⌧s f )

g2
. On the other hand, for some other, more strictly band lim-

ited �lters (Fig. ��), there is only a small amount of noise aliasing, and then
the shape of �nal noise spectrum G⇣( f ) can be quite similar to the dashed
�lter-shape line in [W��].
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Z(f) = H(f)Y (f)

Y �(f) = H(M)(f)X(f)

Z �(f) = M�.Y �(f)

Figure ��: Decimator!Filter order change rule in frequency domain. For any input
spectrum X( f ), the system decimator followed by �lter, [M ! H], the top
panel, will give the same output as the system [H(M) ! M], the bottom panel,
so that Z0( f ) ⇤ Z( f ). The �lter H(M) is the “interpolated” �lter which has M�1
zeros between each pair of the taps of H. Note that H(M) operates to samples
xn with the higher sampling rate fs , while H operates to the samples yn with
the lower rate f 0s ⇤ fs/M, and therefore the two �lters have the same transfer
function as function of f . The basic reason to this rule is that the interpolated
�lter has the same form as the original �lter, so that is periodic by f 0s instead
of only by fs . Due to this, it is able to modify all the Nyquist components
of the input spectrum that will ultimately contribute to the �nal baseband in
the decimation. And due to the linearity of the aliasing phenomenon, it does
not matter whether the aliasing components are modi�ed in �ltering before
the aliasing takes place (as in bottom panel) or after the aliasing (as in the top
panel). In the drawing, decimation factor M ⇤ 2, and the light-coloured yel-
lowish stripe represent the primary baseband, the the dark yellowish colour
the �nal baseband. The �nal baseband is marked only for those spectra which
correspond to the sampling frequency f 0s .
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Z(f) = M�.Y (f)
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Figure ��: Filter!Decimator no-swap rule in the frequency domain. It is not, in general,
possible to move a decimator that is after a �lter to the front of the �lter, even
if the �lter would be modi�ed at the same time, and still get an equivalent
system. That is, given the system hH ! Mi, it is not possible to �nd an
equivalent system of the form hM ! H0i. In spectral terms, this is because
when the decimator is after the �lter, as in the top panel, the �lter “protects”
the decimator so that aliasing will not occur in the decimation. If decimation
is done �rst, as in the bottom panel, aliasing can happen, and can lead to
irreversible loss of information. In the bottom panel, in order to get the same
�nal output Z( f ) as in the top panel, one would need to tailor the �lter H’
separately for each speci�c input X( f ). But for an equivalent con�guration,
the selection of H’ must not depend on the input, it can only depend on M
and H.
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Figure ��: Filter-Decimator no-swap rule in time domain. In terms of the samples, the
rule that given a system hH ! Mi, one cannot �nd an equivalent system in
the form hM ! H0i, is due to the loss of degrees of freedom if the decima-
tion is done �rst, as in the bottom panel. In the bottom panel, the decimated
sequence y0n depends only of the primary samples xm where the index m is
an even number. Therefore, no matter what the �lter h’ would be, the �nal
samples z0n also can depend only on the even-indexed xm . Instead, in the top
panel, where �ltering is done before decimation, the �nal samples zn depend
both on even-indexed xm and odd-indexed xm , zn ⇤ g(x2n , x2n�1). Therefore
the linear functionals g and g’ that de�ne the input-output relation in the two
systems cannot be made equal, no matter how the taps of h’ are chosen. In
the drawing, the �lter H has two taps, both equal to unity, and the decimation
factor M also is two. The top panel also shows how the �ltering is done by
sliding the �lter along the input sequence.
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Figure ��: Filter b����d�, standard ddfplan graphics, overview plot. The top row of
panel gives the impulse response and the power response |HCIC( f )|2 of the
high-order decimation �lter of HSP�����. The middle panels give the im-
pulse response and the power response |HFDF( f )|2 of the �r decimation �lter
of HSP�����. The bottom panel gives the impulse response and the power
response |HDDF( f )|2 of the equivalent �lter of the whole system. For b����d,
the FDF is arranged, in e�ect, to be in all-pass state. This is an exception to the
normal ddfplan.m algorithm for the FDF design as a cascade of boxcar sec-
tions. All the power responses are de�ned in the 15 MHz primary baseband
[�7.5, 7.5] MHz; various parts of it are shown in these plots. The DDF has a
null at �.� MHz, but except in its immediate vicinity, the �lter does to o�er
su�cient stop band attenuation. From the log scale plot, that is not conspic-
uously obvious, though.
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Figure ��: Filter b����d�, ddfplan graphics, standard plot �. The �lter frequency re-
sponse in panels � and � is shown only for frequencies up to 5.0 MHz instead
the whole way up to 7.5 MHz, the edge of the primary baseband. In addition
of providing a somewhat “arbitrary” end point for the frequency axis (neither
the primary nor the �nal baseband), this choice also unfortunately results in
an overly optimistic impression of the �lter behaviour for this anomalously
wide �lter. As an unrelated problem, in the top panel, it is questionable how
much sense it makes to draw the three-tap discrete �lter impulse response us-
ing the (or any) continuous curve. This could potentially be a problem if the
�lter were used in standard incoherent scatter analysis, where the impulse
response curve is the sole source of information about a channel’s �lter.
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Figure ��: Simulation of the 5 MHz channel in quip. The corresponding measured
data are shown in Fig. �. In the simulation, one generates samples of a
��.� MHz real-valued sinusoidal, noise-free, signal to represent the �� MHz
primary A/D samples, then shifts those to baseband by multiplication with
a ��.� MHz complex sinusoid, and �nally �lters and decimates using the
b���d� �lter. The level of the simulated signal is selected so that the mean
value of the power data in the top panel equals to the mean power in the
measured data in Fig. �. The e�ect of the �lter is simulated by directly com-
puting the convolution of the samples and the �lter’s inputs response. This
was how we initially veri�ed that our understanding of the “oscillations” in
Fig. � was on a right track. For more general use, the script ddfsimu.m now
provides similar plots, such as in Fig. ��. Those are computed in a di�erent
way, though.
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Figure ��: Geometry of the beat in the complex plain. With the primary Doppler
fRX � fTX removed, the noise-free complex signal samples wn ⇤ w(tn) in the
�nal baseband trace a circle centred on the complex number H1 ⇤ H( f1) and
having radius of |H2 | ⇤ |H( f2)|, where f1 is the wanted, near-DC, component
of the original analog spectrum after it is translated to the primary baseband
by bandpass sampling and multiplication by the NCO frequency, and f2 is the
unwanted, higher-frequency spectral component (deriving from the positive
frequency component of the analog spectrum), which ideally should be en-
tirely absent due to post-detection �ltering. With |H2 | > �, both the magnitude
and phase of the samples vary periodically, giving rise to the observed beat,
the oscillations in both power and phase. The �gure suggests that the peak-
to-peak variation in |w(t)|2 equals to (|H1 | + |H2 |)2 � (|H1 |� |H2 |)2 ⇤ 4|H1 ||H2 |.
The peak-to-peak phase variation of w(t) corresponds to twice the angle � of
the �gure, solvable from sin(�) ⇤ |H2 |/|H1 |.
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Analog spectrum:  TX=10.1 MHz, RX=10.1 MHz
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Figure ��: Beat analysis of the quip 5 MHz channel, case �. This is a standard ddfsimu
analysis plot for the 5 MHz decimating �lter b����d�. Input is a sinusoidal
signal at 10.1 MHz, and also the NCO is set to 10.1 MHz. The corresponding
simulation plot is in Fig. ��. Another case is shown in Fig. ��, and that �gure
also provides a more detailed caption about the plot contents.
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Figure ��: Beat simulation on the quip 5 MHz channel, case �. This is a standard
ddfsimu simulation plot for the decimating �lter b����d�, used in quip for
5 MHz sampling. Input is a sinusoidal signal at 10.1 MHz, and also the NCO
is set to 10.1 MHz. The corresponding analysis plot is in Fig. ��. Three other
beat simulations are shown in Fig. ��, Fig. �� and Fig. ��.
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Analog spectrum:  TX=10.4 MHz, RX=10.4 MHz
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f1 = 0.000 /15 = 0.000 /5.000,  f2 =  5.800 /15 = 0.800 /5.000,   A1 = 1.0000,  A2 = 0.1713
Beat: Freq = −0.800 MHz,  P2P pow = 0.685,  P2P angle=19.73,  Mean pow = 1.0294, A1/A2= 15.3 dB
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Figure ��: Beat analysis of the quip 5 MHz channel, case �. The top panel shows the
delta-function-like spectrum of the real sinusoidal input at 10.4 MHz. Also
the NCO is set to 10.4 MHz. The middle panel shows the impulse response
of the b����d� �lter. The bottom panel shows the magnitude |H( f )| of the
�lter’s transfer function, plotted on linear scale, over the whole primary base-
band from �7.5 MHz to +7.5 MHz. The �nal baseband [�2.5, +2.5] MHz is
indicated by the grey-colorer area. Locations of the spectral components both
in the primary baseband (solid circles) and the �nal baseband (open squares)
are indicated. The header of the bottom panel gives quantitatively the fre-
quencies both at the primary and the �nal baseband; the values A1 and A2 of
|H( f )| at the locations of the spectral components on the primary baseband
(in the main text these are denoted by |H1 | and |H2 |); the beat frequency; peak-
to-peak power variation, peak-to-peak phase variation; mean power; and the
amplitude ratio of the two spectral components. The plot was generated with
ddfsimu.m. The corresponding simulation plot is in Fig. ��.
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Figure ��: Simulation on a b����d� channel with RX=TX=F��.
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Figure ��: Beat aliasing, plot A. See the caption of Fig. ��.
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Figure ��: Beat aliasing, plot B. This �gure together with Fig. �� illustrates beat alias-
ing where two very di�erent, correctly sampled signals give the same appar-
ent beat frequency, 800 kHz in this case (the blue-colorer time-series curves).
Note that the beat curves here and in Fig. �� are not identical, though, and the
underlying continuous-time beat, the solid green curves, is of course entirely
di�erent. These �gures were generated with ddfsimu.m.
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Analog spectrum:  10.6 MHz real−valued sinusoid
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f1 = −0.500 /15 = −0.500 /2.500,  f2 =  5.700 /15 = 0.700 /2.500,   A1 = 0.8783,  A2 = 0.0191
Beat: Freq = −1.200 MHz,  P2P pow = 0.067,  P2P angle=2.49,  Mean pow = 0.7719, A1/A2= 33.3 dB
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Figure ��: Plot �/� of �lter b���d� simulation with fRX ⇤ 10.6, fNCO ⇤ 10.1 MHz. The
channel is tuned to 10.1 MHz (UHF F��). There is a 0.5 MHz “Doppler-shift”
in the input signal. Final sampling rate is 2.5 MHz. The unwanted detection
product (blue) is 33.3 dB down from the wanted one (red). This is su�cient
to cause a 8.7% peak-to-peak variation in power, and a 2.49� peak-to-peak
variation in phase (on top of the phase variation due to the Doppler).
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Figure ��: Plot �/� of �lter b���d� simulation with fRX ⇤ 10.6, fNCO ⇤ 10.1 MHz. The
beat frequency is�1.2 MHz, the period is 0.833 µs. The period is only slightly
longer than two times the �.� µs sampling interval, giving a most typical beat
pattern of samples.
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Figure ��: The decimating �lter b��d���. This decimating digital �lter is for 15 µs
�nal sampling interval, f 0s ⇤ 66.7 kHz �nal sampling rate. The top panel
shows the impulse response. There are ��� taps in this single-�lter, single-
decimator equivalent representation of the HSP����� operation. The middle
panel shows the magnitude (blue) and squared magnitude (red) of the equiv-
alent �lter’s transfer function H( f ) in the interval [�2 f 0s , 2 f 0s ]. The grey area
shows the �nal baseband [� f 0s/2, f 0s/2]. The bottom panel shows the noise re-
sponse G⇣( f ) of the �lter (black curve) in the interval [� f 0s , f 0s ]. The noise re-
sponse is computed from Eq. (���), which assumes white noise input. The red
curve in the bottom panel is the squared magnitude of the transfer function,
the same as in the middle panel, plotted here for comparison. The greyed
area indicates the �nal baseband. The �lter’s noise equivalent bandwidth is
52.3 kHz and the 3 dB bandwidth is 49.4 kHz. This �lter is currently used in
the ion-line channels of the UHF bella experiment of IH.
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Figure ��: The decimating �lter b��d���. This decimating digital �lter is for 20 µs �nal
sampling interval, f 0s ⇤ 50.0 kHz �nal sampling rate. The top panel shows
the �lter’s impulse response. There are ��� taps in this single �lter, single
decimator equivalent representation of the HSP����� operation. The mid-
dle panel shows the magnitude (blue) and squared magnitude (red) of the
equivalent �lter’s transfer function H( f ) in the interval [�2 f 0s , 2 f 0s ]. The grey
area indicates the �nal baseband [� f 0s/2, f 0s/2]. The bottom panel shows the
noise response G⇣( f ) of the �lter (black curve) in the interval [� f 0s , + f 0s ]. The
noise response is computed from Eq. (���). White noise input to the �lter is
assumed. The red curve is the squared magnitude of the transfer function as
in the middle panel, plotted for comparison. The greyed area indicates the
�nal baseband. The noise equivalent bandwidth is 53.8 kHz, and the 3 dB
bandwidth is 50.8 kHz. This �lter is currently used on the ion-line channels
in the UHF beata experiment of IH.
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Figure ��: The decimating �lter b���d��. This decimating digital �lter is for 1.0 µs �nal
sampling interval, f 0s ⇤ 1.0 MHz �nal sampling rate. The top panel shows
the �lter’s impulse response. There are �� taps in the single-�lter, single-
decimator equivalent representation of the HSP����� operation. The middle
panel shows the magnitude (blue) and squared magnitude (red) of the �l-
ter’s transfer function H( f ) in the interval [�2 f 0s , 2 f 0s ]. The grey area indicates
the �nal baseband [� f 0s/2, f 0s/2]. The bottom panel shows the periodic-by- f 0s
noise response G⇣( f ) of the �lter (black curve) in the interval [� f 0s , + f 0s ], com-
puted from Eq. (���). White noise input was assumed. The red curve in the
bottom panel is the squared magnitude of the transfer function, same as in the
middle panel, plotted here for comparison. Again, the greyed area indicates
the �nal baseband. The noise equivalent bandwidth is 1.09 MHz and the 3 dB
bandwidth is 1.03 MHz. The �lter had earlier been used in my satellite mea-
surement experiment leo. The �lter was now used in the quip experiment in
May ���� on the channel �, which collected ion-line voltage-level data (Fig. �).
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Figure ��: The decimating �lter b���d�. This decimating digital �lter is for 0.4 µs �nal
sampling interval, f 0s ⇤ 2.5 MHz �nal sampling rate. The top panel shows
the �lter’s impulse response. There are �� taps in the single-�lter, single-
decimator equivalent representation of the HSP����� operation. The mid-
dle panel shows the magnitude (blue) and squared magnitude (red) of the
equivalent �lter’s transfer function H( f ) in the interval [�2 f 0s , 2 f 0s ]. The grey
area indicates the �nal baseband [� f 0s/2, f 0s/2]. The bottom panel shows the
noise response G⇣( f ) of the �lter (black curve) in the interval [� f 0s , + f 0s ]. The
noise response is computed from Eq. (���). White noise input to the �lter is
assumed. The red curve is the squared magnitude of the transfer function,
the same as in the middle panel, plotted here for comparison. The greyed
area again indicates the �nal baseband. The noise equivalent bandwidth is
1.69 MHz, and the 3 dB bandwidth is 1.61 MHz. This �lter is currently used
for the plasma-line channels in the UHF beata experiment of IH.
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Figure ��: The decimating �lter b����d�. This decimating digital �lter is for 0.2 µs �-
nal sampling interval, f 0s ⇤ 5.0 MHz �nal sampling rate. The top panel shows
the �lter’s impulse response. There are only three non-zero taps in this single-
�lter, single-decimator equivalent representation of the HSP����� operation.
The middle panel shows the magnitude (blue) and squared magnitude (red)
of the equivalent �lter’s transfer function H( f ) in the whole primary base-
band [�7.5, 7.5] MHz. The grey area indicates the � MHz wide �nal base-
band [�2.5, 2.5] MHz. The bottom panel shows the—now constant—noise
response G⇣( f ) of the �lter (black curve) in the interval [� f 0s , + f 0s ]. The noise
response is computed from Eq. (���). White noise input to the �lter is as-
sumed. The red curve in the bottom panel is the squared magnitude of the
transfer function, the same as in the middle panel, plotted here for compari-
son. The greyed area indicates the �nal baseband. The noise equivalent band-
width of the �lter is 5.0 MHz, and the 3 dB bandwidth is 4.66 MHz. This �lter
was for the �rst time used in the quip experiment in May ����.
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9 Matlab routines

Header sections, as of September �th, ����, of the three Matlab routines referred to in
this document are listed below. The code itself is available in the EISCAT HQ software
repository, in the subdirectory ddf of the CVS module �r. Use “cvs get �r/ddf” to get a
copy of it.

Listing �: Routine ddfplan.m to design �lters for EISCAT digital receiver.
% DDFPLAN (TYPE ,HDEC,HSEC,FDEC, FSEC , FTAPS)
% Design r o u t i n e f o r EISCAT D i g i t a l F i l t e r s .
%
% The f u n c t i o n c a l c u l a t e s and p l o t s impu l s e r e s p on s e , power
% r e s p o n s e ( s qua r e o f f i l t e r t r a n s f e r f u n c t i o n ) , and
% ‘ ‘ wh i t e n o i s e r e s p on s e ’ ’ , g i v en :
%
% TYPE : Must be e i t h e r ’ b ’ f o r �� MHz sampl ing c l o c k ,
% or ’w’ f o r �� MHz sampl ing c l o c k .
% HDEC: Dec imat i on f a c t o r o f t h e h igh o r d e r f i l t e r ( � . . . � � � � ) .
% Paramet e r i g n o r e d in bypa s s mode ( s e e HSEC ) .
% HSEC: Number o f s e c t i o n s in t h e h igh o r d e r f i l t e r ( � . . � ) .
% Se t HSEC t o z e r o t o bypa s s t h e h igh o r d e r f i l t e r .
% FDEC: Dec imat i on f a c t o r o f t h e FIR ( � . . � � ) .
% Paramet e r i g n o r e d in byba s s mode ( s e e FSEC ) .
% FSEC : Number o f s e c t i o n s in m od e l l i n g t h e FIR with b ox c a r
% s e c t i o n s .
% Se t FSEC t o � t o bypa s s t h e low o r d e r FIR s e c t i o n ( but
% s e e nex t param ) .
% FTAPS : Number o f t a p s in one b ox c a r s e c t i o n in t h e FIR model .
% I f FSEC == � and FTAPS == � , we use FIR = [� � � ] ,
% o t h e r w i s e wi th FSEC == � , t h i s p a r ame t e r i s i g n o r e d .
%
% F i l t e r p a r a m e t e r s a r e w r i t t e n t o f i l e f i r p a r . f i r . For p r o d u c t i o n
% use , t h e f i l e must be manual ly renamed t o t h e f o rma t
% <x><kkk >d<mmm>. f i r , where < x i s t h e TYPE , <kkkk > i s �dB p o i n t in kHz ,
% and <mmm> i s t o t a l dec im .
%
% The g r a p h i c s i s s av ed t o f i l e s f i r p a r . eps , f i r p a r . ps , and f i r p a r . png .
%
% ( c ) EISCAT S c i e n t i f i c A s s o c i a t i o n ���������

% Nov�������� Jm : us ing f s = �� MHz f o r Pent ek t e s t i n g
% Nov�������� Jm : ba ck t o �� MHz.
% Nov�������� Jm : l o c a t i o n o f f i l t e r p o l e s added
% Nov�������� Jm : f s = �� MHz
% ���Feb ����� Jm
% ��Apr����� Jm : Code somewhat r e s t r u c t u r e d , p l o t s improved ,
% more i n f o put i n t o f i r p a r f i l e h e a d e r .
% ���Mar����� Jm : Compute n o i s e e q u i v a l e n t bandwidth .
% Prov i d e f i r p a r . png .
% ��Oct����� Jm : Check f o r minimum Hdec added .
% ���Apr����� Jm : The Hdec min c h e c k changed from e r r o r t o warning .
% ���Apr����� Jm : Check f o r t h e number o f FIR t a p s added .
% ���Apr����� Jm : HDF and FIR bypa s s modes implemented . S p e c i f y Hsec or
% Fse c as z e r o t o a c h i e v e t h i s .
% �Aug����� Jm : Gene r a t e n o i s e p l o t a l s o . Th i s i s s t i l l e x p e r i m e n t a l ,
% as i t s l ows t h i n g s down q u i t e a l o t .
% ���Aug����� Jm : The term " p o l e " was used wrongly��� f i l t e r z e r o s were
% c a l l e d p o l e s ( ! )
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Listing �: Routine ddfsimu.m to simulate �lter output for a sinusoidal input. The rou-
tine was especially written to analyse the beat behaviour of the wideband �l-
ters.

% DDFSIMU
% I n s p e c t an EISCAT d i g i t a l channe l , e s p e c i a l l y f o r t h e b e a t b e h a v i o u r .
%
% The r o u t i n e s i m u l a t e s ch anne l ou tput assuming a n o i s e l e s s s i n u s o i d a l
% input t o t h e A/D, wi th a d j u s t a b l e f r e qu ency , and a d j u s t a b l e
% r e c e i v e r NCO s e t t i n g .
% Two p l o t s a r e g e n e r a t e d : � ) an a n a l y s i s p l o t which shows t h e ana l og
% spectrum , t h e f i l t e r i n p u l s e r e s p on s e , and t h e f i l t e r t r a n f e r f u n c t i o n
% with t h e f r e q u e n c y mapping , and � ) a s i m u l a t i o n p l o t t h a t shows t ime
% s e r i e s o f power , t ime s e r i e s o f pha s e ( Doppler�removed ) , and t h e power
% spec t rum o f t h e s i m u l a t e d da t a .
%
% INPUT
% � . FIRFILE ( r e q u i r e d ) . f i r f i l e name ,
% e . g . ’ / k s t / dsp / f i r / b���d� . f i r ’
% � . FRX _HZ ( o p t i o n a l ) RX f r e q u e n c y a t IF� ( b e f o r e A/D) in Hz ,
% d e f a u l t = � � . � E� .
% � . FNCO_HZ ( o p t i o n a l ) NCO f r e q u e n c y in Hz , D e f a u l t = FRX_HZ.
% � . WINLEN_SEC ( o p t i o n a l ) Window l e n g t h f o r t ime s e r i e s p l o t t i n g ,
% d e f a u l t = ��E�� .
% � . FFTLEN_SEC ( o p t i o n a l ) Data l e n g t h f o r FFT , in s e conds ,
% d e f a u l t = WINLEN_SEC .
%
% OUTPUT i s two s t r u c t u r e s , OUT and IN , with t h e f o l l o w i n g f i e l d s .
% OUT.
% f � _ p r i Frequency o f t h e neq f r e q component o f t h e r e a l ana l og
% input mapped t o pr imary ba s eband .
% f � _ p r i Frequency o f t h e pos f r e q component o f t h e r e a l ana l og
% input in mapped t o pr imary ba s eband .
% f � _ f i n Frequency o f t h e neq f r e q component o f t h e r e a l ana l og
% input mapped t o f i n a l ba s eband .
% f � _ f i n Frequency o f t h e pos f r e q component o f t h e r e a l ana l og
% input mapped t o f i n a l ba s eband .
% f _ b e a t Bea t f r e q u e n c y ( t h e pr imary one ; not t h e a l i s e d one )
% h�_dB Power o f f � a f t e r f i l t e r i n g = |H( f � _ p r i ) |^� .
% h�_dB Power o f f � a f t e r f i l t e r i n g = |H( f � _ p r i ) |^� .
% pow_p�p Peak t o peak b e a t power v a r i a t i o n .
% pow_ave Mean power .
% pha_p�p Peak t o peak b e a t pha s e v a r i a t i o n in degr .
% IN .
% f i rname Name o f t h e f i l t e r
% frx_Hz RX f r e q u e n c y a t IF�
% fnco_Hz NCO f r e q u e n c y
% f s _ p r i Primary sampl ing f r e q u e n c y
% decim Dec imat i on f a c t o r
% f s _ f i n F i n a l sampl ing f r e q u e n c y
% t a u _ f i n F i n a l sampl ing i n t e r v a l
%
% EXAMPLE
% [ out , in ] = ddfs imu ( ’ / k s t / dsp / f i r / b���d� . f i r ’ , �� .� E� , � � . � E� , ��E�� ,

����E��)
%
% ( c ) EISCAT S c i e n t i f i c A s s o c i a t i o n �����

% ���Aug����� Jm I n i t i a l v e r s i o n .

��



Listing �: Routine get_impresp.m to extract �lter parameters from a .�r �le. This routine
can be used to fetch the �lter impulse response from the �lter de�nition �le
produced by ddfplan.m.

% GET_IMPRESP � Get impu l s e r e s p o n s e from an EISCAT f i l t e r d e f i n i t i o n f i l e .
% INPUT
% FIRFILE . f i r f i l e pa th .
% P_DTAU Time s t e p in m i s c r o s e c o f t h e r e t u r n e d cont inuous �
% time h ( t ) .
% PLOT_FLAG ( Opt i ona l ) I f nonzero , p l o t t h e impu l s e r e s p o n s e o f
% t h e HDF, FDF , and DDF.
% OUTPUT
% IMPRESP The cont inuous �t ime ( pch ip� i n t e r p o l a t e d ) v e r s i o n o f
% impu l s e r e s p o n s e . The IMPRESP i s no rma l i z e d t o un i t
% a r e a .
% TSTART S t a r t t ime o f t h e i n t e r p o l a t e d IMPRESP .
% DDF Taps o f t h e e q u i v a l e n t f i l t e r .
% DECIM Dec imat i on f a c t o r o f t h e e q u i v a l e n t f i l t e r .
%
% EXAMPLE
% >> [ impresp , t� , t aps , dec im ] = g e t _ impr e s p ( ’ b��d��� . f i r ’ , � ) ;
%
% ( c ) EISCAT S c i e n t i f i c A s s o c i a t i o n �����

% ��� Ju l ����� Jm
% ���Feb ����� Jm : Handling o f odd number o f t a p s changed .
% ���May����� Jm : P l o t t i n g made more p r e c i s e e s p c i a l l y f o r high�s p e e d
% f i l t e r s . Also no t e t h a t f o r t h o s e , t h e r e t u r n e d
% " i n t e r p o l a t e d " impu l s e r e s p o n s e can be a p r e t t y bad
% app r ox ima t i on . Also r e t u r n t h e no rma l i z e d t a p s o f
% t h e e q u i v a l e n t f i l t e r h = conv ( h� , h� ^(M�) ) ,
% where h� i s t h e HDF and h� ^(M�) i s z e ro � s t u f f e d FDF ,
% with M��� z e r o s be tween ea ch p a i r o f t a p s o f t h e FDF .
% ��Aug����� Jm : Also r e t u r n t h e t o t a l d e c i m a t i o n f a c t o r M = M��M� .

��
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