16. 15 The EROS user interface (JM):
- EROS internal structure
- how EROS communicates with drivers
- how the user communicates with EROS

- the EROS simulator

17.30 Hamburger party at the Space Campus

Operating an EISCAT radar

7))
Q
=
-

©

£

EISCAT radar operation = ELAN commands in, raw data out.
(The single required ELAN command to perform a full-flegded EISCAT
experiment can often be copy-pasted from the EISCAT schedule.)

| EROS4 - the middle man |

0 RADAR
Remote
user o (0@‘2:
o Y~
Qb O
& $
$ TRANSMITTER
ELAN
script ‘ power amp
Local
user
o Data RADAR
= access HARDWARE
DATA |4 b (-PA)
-

EROS4 processes and associates (Kiruna site)

Rec VME computer k5011 Server k2501
Always active
| decod
Correlator seocme Recorder Long-lived
Short-lived

RT common

Monitor

EXPDOER [

Messages

COMPRO el ez

Wish command sources

Commands
from script Delayed
l A}mmands

Commands

from network .

Commands
from local terminal

A wish process has a single thread only, but can still serve asyncronous
commands from several sources via its built-in event loop.

» COMPRO-wishe receives and parameter-checks local interactive commands and sends them

over to EXPRUN.

» EXPRUN-wishe is the central engine. It receivers all user-level commands and organizes

the required actions, mostly by giving commands to ACU, EXPDOER and MONITOR. It interacts
directly with the decodump. EXPRUN maintains the radar state information — all the

printXXX commands are served directly by EXPRUN. EXPRUN maintains the EROS4 system log,
and displays in the "Messages" window error messages and user messages. EXPRUN does

all UHF pointing geometry computations.

» ACU-wishe executes in the receiver VME crate computer. It receives commands from

EXPRUN to invoke various UNIX-level routines (loadrc) to access the hardware over

the VME-bus. In KST, ACU also accesses the antenna (pointxxx), and takes care of celestial tracking.
» EXPDOER-wishe runs an ELAN file simply by sourcing it. EXPDOER itself executes

the SYNC, AT, BLOCK, CALL, DO and DISP-commands. Most other commands EXPDOER sends
back to EXPRUN, who handles them as if they were interactive user commands.

» MONITOR-wishe runs explicitly a tight loop, which checks periodically various things like the
current antenna position, which it updates in RTcommon, or if there is an experiment in the run queue,
or a block in the gotoblock queue, or if it is time to put the UHF antenna to standby.

EROS4 command sources

LOCAL
REMOTE EXPERIMENT

EXPERIMENT m SCRIPT
R

.elan

EXPDOER

COMPRO

Console

REMOTE
EROS USER

COMPRO Console

LOCAL
EROS USER

All commands, both local and remote, are first send over the network to EXPRUN,
which distributes them to the appropriate server processes: ACU, decodump, etc.

This arrangement is meant to ensure the integrity of the hardware access.

EROS4 internal command passing

TROMSO UHF VME COMPUTER u5011 TROMSO SERVER 145001

®

"eval LoadRadar TRA ..."

@ i

loadradar tra ...

VME backplane

UHF_COMPRO
CONSOLE
vV U: loadrad tra ..
UHF UHF @
REC R/C TRAN R/C
|

— e e e e e e e e e e e e e e e e e o e = = = o — —

EROS4 simulator, internal command passing |

your workstation

SIMU_VME
exec

simu_loadtxrc

€)

"eval exec [eGet loadtxrc] ...

@ exec loadtxrc ...

"eval LoadRadar TRA ..."
® @

------------------------------------- loadradar tra ...

UHF_COMPRO

EROS4 - what little is left of the "R"

E-TIME B-TIME C-TIME U-TIME

J*‘i ______ Yo

S: printexp

EXPERIMENT (SaD) 27-Jul-2005 04:37:42.
Exp file : tauzpl.£lan
dir : Fkstiekp/tauzpl
state : RUNNMNING since 26-TJul 22:57:36.5

E-tiMe : 26/Tul 22:55:00.0
Blotk uz2pl 292.9
launch: :57:42.0
B-timgesd +55:00.0
Cont.at :

4:38:40.0
1oop
vad contr

) QO

I R L

il U

0 T
i By
(ny}
|
o
pu— |

i.1D_FH@godﬁZDDSD?2?_ﬂ4I1?901455.mat

O W

e 1y T SN N T SN
(-
Lo

=-J Ot

-
- el

B o
-.C

(R L
o |

e I

-

—t i (D
'

(g

Implementation of SYNC and AT commands

file:/kst/eros4/lib/expdoer.tcl

proc SYNC { Nsec } {
global C-TIME
set C-TIME [expr SC-TIME + $Nsec]
while { [UT] < $C-TIME } {
Serve background commands

}

proc AT { UTspec } {
global C-TIME
set C-TIME S$UTspec
while { [UT] < $C-TIME } ({
Serve background commands

}

Time-syncronisation in an ELAN program

uT CTIME BTIME ETIME
7:57:36.3 undefined undefined undefined
runexp MM 8:00| / |
7:57:36.4 8:00:00.0 8:00:00.0 8:00:00.0
BLOCK M { |
8:00:00.0
t...
°c 7:57:36.5 8:00:00.0
SYNC -50 | _—
7:59:55.0 7:59:55.0
load ...
7:59:56.2 1:59:56.0
SYNC 3.0 | _—
7:59:58.0 7:59:58.0
start ...
7:59:58.3 7:69:68.0
8:00:00.0 8:00:00.0
callblock B
b 8§:00:00.1 8:00:00.0
BLOCK B { |
8:00:00.0
DO -1
‘ §:00:00.2 8:00:00.0
SYNC 60.0 | —
operations 8:01:00.0 8:01:00.0
|

