
 2

 - Statistical accuracy and the high SNR case

 - How hardware restricts experiment design

13.45-14.45 Review of the EISCAT radar hardware (GW)

 - Controlling the radar: the Radar Controller, EROS

 - RF spectrum issues and problems

 - Generating the RF waveform

 - Raising the RF power level: the transmitters

 - Radiating and collecting the signals: the antennas

 - Recovering the scatter signal: the receivers

 - DSP: the digital back-ends and process computers

14.45 Coffee break

15.30-16.00 Signal processing (AW):

 - lag_wrap and decodump

 - where they run,

 - how data flows between them

 - throughput, bottlenecks

16. 15 The EROS user interface (JM):

 - EROS internal structure

 - how EROS communicates with drivers

 - how the user communicates with EROS

 - the EROS simulator

17.30 Hamburger party at the Space Campus

21.00 Bus leaves to Kiruna

TUESDAY, 16 August (Aula, EISCAT receiver station)

9.00 How data is stored (AW):

 - data directories and files

 - data transfer to on-line archive

 - accessing the on-line archive

9.30 Runtime tools (IH)

 - RTGRAPH

 - on-line logbook

10.00-10.30 Coffee break

10.30 Output data structure and organisation, RTGRAPH (AW, IH)

 - mapping the dump

 - setting up RTGRAPH for a new experiment

 - how to access the data for special processing

11.00 EROS commands etc (JM):

 - .elan syntax and commands

 - features unique to the tristatic UHF

 - antenna pointing

RADAR
HARDWARE

 (- PA)

2
 -

 4
 P

R
O

C
E

S
S

C
O

M
P

U
T

E
R

S

TRANSMITTER
PA

EROS

DATA

ELAN

script

Remote
user

E
L

A
N

co
m

m
an

d
s

Local
user

Data
access

.m
a
t

fi
le

s

RADAR

Operating an EISCAT radar

EISCAT radar operation = ELAN commands in, raw data out.
(The single required ELAN command to perform a full-flegded EISCAT
experiment can often be copy-pasted from the EISCAT schedule.)

RADAR
HARDWARE

 (- P.A.)

 P
R

O
C

E
S

S
C

O
M

P
U

T
E

R
S

TRANSMITTER
power amp

EROS4

DATA

ELAN
script

Remote
user

E
L

A
N

c
o
m

m
a
n
d
s

Local
user

Data
access

.m
a
t

fi
le

s

RADAR

EROS4 – the middle man

!

!

decodump

MONITOR

EXPDOER

EXPRUN

COMPRO

lag_wrap

ACU

Messages

Elan

Console

Vme

Monitor

Correlator Recorder

RT common

remcom.py

Server k2501Rec VME computer k5011

loadfir

setnco

loadrc

EROS4 processes and associates (Kiruna site)

...

eros Always active

data
acc

Long-lived

unix Short-lived

wish

process
K:

Commands
from local terminal

Delayed
commands

Commands
from network

Commands
from script

Wish command sources

A wish process has a single thread only, but can still serve asyncronous
commands from several sources via its built-in event loop.

! COMPRO-wishe receives and parameter-checks local interactive commands and sends them
over to EXPRUN.

! EXPRUN-wishe is the central engine. It receivers all user-level commands and organizes
the required actions, mostly by giving commands to ACU, EXPDOER and MONITOR. It interacts
directly with the decodump. EXPRUN maintains the radar state information – all the
printXXX commands are served directly by EXPRUN. EXPRUN maintains the EROS4 system log,
and displays in the "Messages" window error messages and user messages. EXPRUN does
all UHF pointing geometry computations.

! ACU-wishe executes in the receiver VME crate computer. It receives commands from
EXPRUN to invoke various UNIX-level routines (loadrc) to access the hardware over

the VME-bus. In KST, ACU also accesses the antenna (pointxxx), and takes care of celestial tracking.

! EXPDOER-wishe runs an ELAN file simply by sourcing it. EXPDOER itself executes
the SYNC, AT, BLOCK, CALL, DO and DISP-commands. Most other commands EXPDOER sends
back to EXPRUN, who handles them as if they were interactive user commands.

! MONITOR-wishe runs explicitly a tight loop, which checks periodically various things like the
current antenna position, which it updates in RTcommon, or if there is an experiment in the run queue,
or a block in the gotoblock queue, or if it is time to put the UHF antenna to standby.

COMPRO

EXPRUN
EXPDOER

COMPRO

EXPRUN

EXPDOER

.elan
.elan

LOCAL

EROS USER

REMOTE

EROS USER

LOCAL

EXPERIMENT

SCRIPT

remcom.
py

:2351

Console

remcom.
py

EROS4 command sources

Console

REMOTE

EXPERIMENT

All commands, both local and remote, are first send over the network to EXPRUN,
which distributes them to the appropriate server processes: ACU, decodump, etc.

This arrangement is meant to ensure the integrity of the hardware access.

UHF_EXPRUN
UHF_ACU

LoadRad TRA
exec loadtxrc

loadrc

TROMSO SERVER t45001TROMSO UHF VME COMPUTER u5011

"eval exec [eGet loadtxrc] ..."

exec loadtxrc ...

UHF_COMPRO

"eval LoadRadar TRA ..."

U: loadrad tra ..

VME
MESSAGES

CONSOLE

VME backplane

loadradar tra ...

Load
R
ad

 T
R
A ..

.

UHF
TRAN R/C

UHF
REC R/C

loadtxrc

EROS4 internal command passing

①

②

③

④

⑤

⑥

UHF_EXPRUN
UHF_ACU

LoadRad TRA

exec
simu_loadtxrc

loadrc

your workstation

"eval exec [eGet loadtxrc] ..."

exec loadtxrc ...

UHF_COMPRO

"eval LoadRadar TRA ..."

U: loadrad tra ..

SIMU_VME
SIMU_MESSAGES

SIMU_CONSOLE

loadradar tra ...

Load
R
ad

 T
R
A ..

.

loadtxrc -T

EROS4 simulator, internal command passing

①

②

③

④

⑤

E-TIME B-TIME C-TIME U-TIME

EROS4 - what little is left of the "R"

proc SYNC { Nsec } {
 global C-TIME
 set C-TIME [expr $C-TIME + $Nsec]
 while { [UT] < $C-TIME } {
 Serve_background_commands
 }
}

proc AT { UTspec } {
 global C-TIME
 set C-TIME $UTspec
 while { [UT] < $C-TIME } {
 Serve_background_commands
 }
}

Implementation of SYNC and AT commands

file:/kst/eros4/lib/expdoer.tcl

runexp MM 8:00

SYNC -5.0

load ...

CTIME

7:57:36.3

7:57:36.5

7:59:55.0 7:59:55.0

DO -1

8:00:00.0

SYNC 3.0
7:59:56.2

7:59:58.0 7:59:58.0

SYNC 2.0
7:59:58.3

8:00:00.0 8:00:00.0

SYNC 60.0

8:00:00.2

8:01:00.0 8:01:00.0

set ...

operations

UT

start ...

Time-syncronisation in an ELAN program

undefined

ETIME

8:00:00.0

undefined

callblock B

7:59:58.0

7:59:55.0

8:00:00.0

BLOCK B {

8:00:00.0

8:00:00.0

}

BLOCK M {

}
8:00:00.1

7:57:36.4

BTIME

8:00:00.0

undefined

8:00:00.0

8:00:00.0

